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INTRODUCTION 

The national concern for the water quality in our streams and 

rivers has increased the importance of low flow estimation. The Federal 

Water Pollution Control Act of 1965 [1] required the States to establish 

Water Quality Standards for surface waters, and the 1972 amendments to 

the FWPCA [2] (PL92-500) created a new planning regime called 

Water Quality Management (WQM) that relies on these water quality 

standards. Both Acts expect the water quality standards to be ulti­

mately realized whenever any stream's flow exceeds some predetermined 

minimum flow, often called the Critical Low (or Critical Design) Flow 

(CLF). Furthermore, the water quality management process often employs 

prediction models which project the quality impacts of point and non-

point discharges at the CLF. If the prediction model shows a violation 

of the water quality standards, one or more dischargers may be required 

to meet more stringent effluent standards. The resulting alteration 

and/or addition of processes can involve extremely large resource in­

vestments. Because the consequences of a faulty projection are great, 

the projection models must be accurate. Among the sources of error are 

the data and the method used to estimate the Critical Low Flow, and 

these are reasons for increased concern with low flow estimation. The 

customary method of studying and estimating low flows (1) involves the 

collection of low-flow discharges at a stream gaging station over a 

period of time, (2) assumes that these are naturally occurring events 

essentially unaffected by man's activities, or, if so, will remain 

relatively unaffected or unaltered in the future, and (3) includes the 
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listing and review of the record minimum low flows, and a statistical 

analysis using a selected probability method. McKee and Wolf [3] re­

viewed in 1963 the historical development of low flow estimation, and 

Wolf [4] made an additional review following pasrage of the comprehensive 

1965 legislation by Congress. 

The available low flow estimation methods can produce accurate, 

estimates as long as the assumptions underlying the techniques are 

essentially fulfilled. Such assumptions, however, are fulfilled far 

more effectively in the humid and subhumid basins commonly found east 

of the Missouri-Mississippi Rivers and along the Pacific coast than 

in the arid and semiarid areas of the western United States where many 

more constraints are encountered, both natural and manmade. As a 

result the relatively accurate low flow estimates obtained in the 

humid and subhumid areas may not be realized in the arid and semiarid 

areas. This study investigates these low flow estimation problems as­

sociated with the arid and semiarid areas. 

The nature of these low flow estimation problems is best defined 

by a comparison between the typical humid/subhumid hydrologie structure 

and the structure found in most arid/semiarid basins. Furthermore, the 

water scarcity in the arid/semiarid basins has spawned complex economic 

and institutional structures which create a unique set of low flow 

estimation problems and solutions. There exists also a basic in­

separability of water quality and water quantity. Therefore, the 

first part of this introductory chapter presents a concise comparison 

of the typical physical-economic-institutional frameworks found in 

(1) humid/subhumid basins and (2) arid/semiarid basins. The second 
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part of this chapter then presents and illustrates the specific problems 

related to low flow estimation. 

The General Physical-Economic-Institutional Framework 

The physical framework 

A very basic hydrologie difference between these two basin groups 

is illustrated with the dendritic patterns shown in Figure 1. In a 

humid/subhumid basin the water entering the surface system is predominantly 

surface runoff and groundwater exfiltration, and as the tributary 

drainage area is increased at successive downstream points the magnitude 

of the streamflow is also increased. These streams are characterized 

as continuously "gaining" streams. Alternatively, the arid/semiarid 

surface water system (downstream of mountain headwater sources) re­

ceives little groundwater or surface runoff and acts primarily as a 

conduit for water entering the system in the more humid headwaters or 

entering downstream as a result of a local but major precipitation 

event. Often the streams lose water to the groundwater system, resulting 

in a decrease in flow magnitude at successive downstream points. These 

surface systems are characterized as "losing" streams. 

Reservoirs are common to both groups of basins, and the primary 

uses of many humid/subhumid reservoirs are often flood control and 

recreation. In arid/semiarid basins the primary purpose of a reservoir 

usually is to store water for use in the drier periods of the annual 

water cycle, and often for consumptive use. As a result the amount of 

water in storage will vary more dramatically in the arid/semiarid basins. 
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In addition water users are more likely to divert directly to use from 

a humid/subhumid stream because the dependable flow magnitude frequently 

is far greater than the user's need and storage is not required. 

However, in the arid/semiarid area most users divert from or to a 

reservoir or store their water in an upstream reservoir prior to use 

and bring the water to their diversion point as needed. 

In the humid/subhumid areas agricultural users generally depend 

on precipitation for their crop moisture, and in many areas this group 

of users are primarily dischargers to the surface system because of the 

need to keep their croplands drained. However, in the arid/semiarid 

basins the agricultural users must convey their crop water from the 

surface and/or groundwater systems to their fields. These areas 

typically contain canal systems that divert large quantities of water 

at discrete points in the surface water system, e.g. points A, B, and 

C in Figure 1. The agricultural users also divert water from tribu­

taries, e.g. points D and E in Figure 1, often in large enough quantities 

to prevent any tributary water from reaching the main channel of the 

system. This arid region water-use activity effectively breaks the 

total system into many disconnected subsystems. The agricultural activi­

ties in the dry basins usually return only a small portion of the 

diverted water to the surface system which amplifies the "losing" 

characteristic. 

The conditions described above for the humid/subhumid basins 

produce a hydrograph of flow versus location along a stream bed that 

is a smooth continuous curve rising consistently along successive down­

stream locations. However, in the arid/semiarid basins this hydrograph 
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is usually a broken, sometimes discontinuous, curve that declines along 

successive downstream points. Figure 2 illustrates the typical dif­

ferences in these discharge hydrographs. 

The economic framework 

In humid/subhumid areas water quantity is a relatively minor factor 

in the production functions of most users because the supply of water 

usually exceeds the demand as long as the quality of the water exceeds 

some specifiable minimum level. Acquiring water for use seldom involves 

a cost to obtain ownership, and changes in use patterns usually produce 

minimal impact on other water users. However, in the arid/semiarid 

areas water always is an important production function factor and 

often limits the nature and/or magnitude of economic activities. 

Acquiring water usually involves an ownership cost, and the transfer­

ability of such ownership creates a water market. These interactions 

between the water and economic spheres permit significant economic 

impacts whenever water use patterns change. Any low flow estimation 

method having techniques that can account for recent changes in water 

use patterns will allow water quality planners to employ water use 

pattern changes as a management tool; and the technique will, thereby, 

create an economic impact. 

The institutional framework 

Both humid/subhumid and arid/semiarid basins have institutional 

structures involving the water sphere. The structure in the humid/ 

subhumid basins is oriented towards the orderly allocation of water 

and is loosely connected to the economic structure. Since the water 
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supply usually exceeds the demand, the allocation system is not 

complex and requires minimal administration (the so-called "riparian" 

doctrine). However, in the arid/semiarid areas the institutional frame­

work is large, complex, and well defined (the "prior-appropriation" 

doctrine). This framework serves two important purposes: (1) it 

establishes a transferable property right to use water which then 

becomes the base unit of the water market, and (2) it regulates the 

water flows and impoundments to implement the water allocation plan 

that is established by the water market. These functions require 

large complex legal and administrative systems which are not found 

in the humid/subhumid basins. 

In summary, the flow magnitudes in humid/subhumid basins are 

primarily affected by natural events beginning with precipitation, 

and are minimally affected by the economic and institutional structures. 

In contrast, the flow magnitudes in arid/semiarid basins are strongly 

influenced by the economic and institutional structures. In other words, 

the flow magnitudes in the former basins have a strong stochastic element, 

and the flow magnitudes in the latter basins contain a strong deter­

ministic, or nonstochastic, element. These basic differences explain 

why low flow estimation in arid/semiarid basins contains several 

serious problems not found in the more humid areas. Specific problem 

areas relating to the arid/semiarid regions are presented in the fol­

lowing discussion. 
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Low Flow Estimation and Associated Problems 

in Arid/Semiarid Basins 

Each State has defined a Critical Low Flow, CLF, and the Environ­

mental Protection Agency has defined CLF for numerous special cases, 

e.g. the industrial discharge standards required by PL92-500. The 

defined CLF's can vary from state to state, e.g. the critical time 

period in some states is limited to the dry, warm months of summer and 

fall while otiier states use a 12-month time period, including therein 

the winter months. However, most CLF's are defined in terms of dura­

tion and probability of occurrence. The most common CLF definition is 

the lowest average daily flow for a seven consecutive day period that 

will probably occur on the average once every ten years (the return 

period or recurrence interval). This flow is called the 7-day, 10-year 

low flow (Qy/ig)' This CLF definition has evolved from the general ac­

ceptance of the following underlying low flow estimation principles. 

1. The low flow should be defined over some duration of time 

because aquatic ecosystems can recover frcm most short term stress 

conditions such as those resulting from pollutant "shocks". The 7-day 

duration is usually expressed in regulations, and apparently is pre­

ferred because it will smooth instantaneous, diurnal, and weekly cycles 

but will respond to monthly, seasonal, and long term trends. Durations 

of 1, 2, 3, and 30 days have also been suggested as appropriate for 

low flow estimation. 

2. The low flow must contain a risk element because the complete 

elimination of ecological damage caused by water pollution is economically 



www.manaraa.com

10 

infeasible. The risk element is incorporated in the return interval 

which relates probability to frequency as follows : 

P = ̂ , (1) 
R 

where P is the probability of nonexceedance and is the average return 

interval. 

3. The length of the return interval is also limited by the 

nature of the available data "strings". Longer return intervals de­

crease the accepted risk but require longer data strings for estima­

tion, resulting in fewer stream locations with sufficient record lengths 

to provide accurate estimates. Return intervals from 2 to 20 years are 

discussed in the literature, but the 10 year (or 0.1 annual probability) 

is almost universally accepted as the best compromise between accepted 

risk and data availability [3, 4]. 

The estimation of CLE's has been a problem throughout the history 

of water quality management [3, 4], and currently requires the use of 

frequency distributions. These methods have been well documented by 

Riggs [5, 6], the U.S. Corps of Engineers [7], and Yevjevich [8]. 

The estimation process involves three steps: 

1. the selection of the best frequency distribution model, 

2. the fitting of the data to the distribution model, and 

3. the selection of the CLF from the developed mathematical or 

graphic model. 

Steps 1 and 2 are complex, in a statistical sense, but the final 

step requires only the calculation or the graphical selection of the 
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flow magnitude for a probability of exceedence equal to 0.9 (conversely, 

a probability of nonexceedence of 0.1). 

A common frequency distribution model is a probability distribution 

function (PDF) that relates flow magnitude to the probability of exceedence 

(or nonexceedence) [8], The PDF is sometimes called a cumulative 

probability distribution function, and occasionally the term cumulative 

frequency distribution is used as a synonym for PDF. However, the 

cumulative frequency distribution term is more appropriate for the 

description of a frequency analysis of a set of observations so the 

more precise "probability distribution function" is used herein because 

a model theoretically expresses the population distribution, not the 

sample distribution. Numerous PDF*s are used in low flow estimation 

with the following distributions receiving the most attention. 

1. Normal [8] 

2. Lognormal [9] 

3. Gumbel Extreme Value Type I [10] 

4. Gumbel Extreme Value Type III [11] 

5. Pearson Type III (or Gamma) [7] 

6. Maximum Likelihood [7]. 

Discussions of the distributions can be found in the noted references. 

Distributions 1, 2 and 6 assume the flow values are normally distributed 

about a central value which is also the mode, median, and mean. How­

ever, stream flow is bounded by a minimum of zero and theoretically 

has no maximum bound which usually produces a distribution of values 

where the mode is less than the median, and both statistics are also 

less than the mean. Such distributions are called right (or positive) 
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skewed, and this skewness characteristic is the reason for the develop­

ment of distributions 3, 4 and 5 for low flow estimation. Skewed data 

can sometimes be transformed into a normal distribution by using the 

Naperian logarithm of each value and a lognormal distribution function. 

A PDF can be fitted to a sample of low flow data graphically or 

mathematically. Both methods are often used in the same analysis to 

confirm the accuracy of the estimate. The graphical process involves 

the plotting of observed values followed by the visual fitting of a 

smooth curve. The ordinate scale includes either actual or logarithm 

values of the observed flows (low flow data are usually represented as 

a logarithm), and the abscissa is a probability (or return interval) 

scale designed for a specific probability function. The abscissa 

values assigned to each data point are calculated with a "plotting posi­

tion" equation after the data have been arranged by magnitude. The 

following two equations are commonly used: 

P = T ' 

^ = Nfï ' ») 

where P = plotting position, m = rank of the observation according to 

magnitude within data array, and N = the number of observations. Riggs 

[5] recommends equation 3 while the Corps of Engineers [7] uses both. 

Tevjevich [8l describes the desired characteristics of a plotting posi­

tion equation and concludes that equation 3 best satisfies these charac­

teristics. 



www.manaraa.com

13 

Graphical techniques cannot be used for distributions having more 

than two parameters which limits its application to the normal, lognormal, 

and Gumbel Type 1 distributions. If the empirical data fit the distribu­

tion associated with the plotting paper, the resulting curve will be a 

straight line. Skewed data from a stochastic population will yield 

concave or convex curves. Irregular curves, e.g. "S" curves, are 

symptomatic of several different data inconsistencies. 

Mathematical fitting techniques involve the estimation of distribu­

tion parameters from the empirical data and the subsequent calculation 

of the frequency curve coordinates using the assumed probability 

distribution function or factors derived from the function. This 

technique is appropriate for skewed data that remain skewed after 

transformation. The Pearson Type III distribution (arithmetic or 

logarithmic) is the distribution most commonly used with this technique, 

and low flow data are usually represented as natural logarithms. 

The use of probability distribution functions as statistical models 

implies two basic assumptions about the process being modeled. First, 

the process is assumed to consist of randcm phenomena, and the empirical 

data represent a random sample of this stochastic population. Secondly, 

the process is assumed to remain unchanged over time (stationary) and 

over space (homogeneous). While no hydrologie process fulfills these 

assumptions perfectly, many hydrologie processes are considered to 

meet these assumptions because of a very slow rate of change and/or 

an apparent adherence to the laws of chance. The annual low flow 

events for essentially unregulated streams in humid and subhumid climates 

are considered to fulfill these basic assumptions because the low flow 
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events are still linked to stochastic events such as rainfall and snow­

fall and the process is changing very slowly in a lengthy geologic time 

frame. However, in arid and semiarid climates the low flow events 

cannot be assumed to fulfill the basic assumptions for two reasons. 

First, the annual low flow events are usually not associated with a 

stochastic process such as rainfall but often are associated with a 

more continuous process of groundwater exfiltration or infiltration. 

Secondly, man's demand for water in arid and semiarid climates usually 

exceeds, the supply. Subsequently, this has resulted in extensive regula­

tion by man of the surface and the groundwaters. Because of this 

regulation, the low flow processes are subject to rapid change, and a 

time series of observations may be a collection of samples from several 

different populations of events. Therefore, the application of a 

frequency distribution for low flow estimation in an arid or semiarid 

basin can lead to a large potential error. This statement and the 

basic elements of low flow estimation are illustrated in the following 

example. 

The minimum average daily flows for seven consecutive days in 

each calendar year from 1940 through 1970 have been calculated for USGS 

gaging station 07124000 and is presented in Table 1. The gaging station 

is located on the Arkansas River near Las Animas, Colorado. The 

plotting positions and ranks of each value are also shown in Table 1, 

and the plotting position was calculated with equation 3 above. The 

selection of the minimum flows and the Log Pearson Type III analysis 

presented below were accomplished with computer program A969, 
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Table 1. Annual 7-day low flows, USGS Station 07124000 

Year Flow, cfs Rank̂  Plotting position 

1940 9.71 19 • 0.594 
1941 13.10 15 0.469 
1942 27.40 1 0.031 
1943 17.90 10 0.312 
1944 21.00 7 0.219 
1945 16.40 11 0.344 
1946 18.60 9 0.281 
1947 21.70 6 0.188 
1948 23.60 2 0.062 
1949 23.30 3 0.094 
1950 19.70 8 0.250 
1951 15.90 12 0.375 
1952 22.90 5 0.156 
1953 9.60 20 0.625 
1954 6.07 25 0.781 
1955 7.00 23 0.719 
1956 2.61 30 0.938 
1957 6.20 24 0.750 
1958 11.30 17 0.531 
1959 4.46 28 0.875 
1960 4.61 27 0.844 
1961 8.03 22 0.688 
1962 9.46 21 0.656 
1963 3.34 29 0.906 
1964 2.21 31 0.969 
1965 6.00 26 0.812 
1966 12.30 16 0.500 
1967 10.30 18 0.562 
1968 14.70 13 0.406 
1969 14.30 14 0.434 
1970 22.90 4 0.124 

T̂his analysis was based on the probability of exceedence, e.g., 
flows equal to or greater than the specified 7-day low flow magnitude; 
this ranking is opposite of that used for nonexceedence, where the 
lowest magnitude is given the rank of 1, etc. 
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Streamflow Statistics, that is available through the USGS [12]. The 

following statistics were also calculated: 

Mean = 13.12 cfs 

Standard Deviation = 7.295 cfs 

Skewness = 0.232 

Mean of Logs = 1.033 

Standard Deviation of Logs = 0.300 

Skewness of Logs = - 0.705 

The magnitude of the skewness is in the middle of the range of skewness 

values found among the gaging stations in the Arkansas basin in Colorado 

that had data strings equal to or greater than 10 years. 

The data in Table 1 are plotted on a lognormal grid in Figure 3, 

and a smooth curve has been visually fitted to the plotted points. The 

concave downward shape of the curve and the median value being larger 

than the mean are typical of negatively skewed data. In this example, 

the log transformation did not eliminate the original data skewness. 

The changing curvature of the curve may be indicative of an aberration 

in the data and provides a warning of potential error. 

The data in Table 1 are used also to estimate the parameters of 

a Log Pearson Type III frequency curve, and the computed coordinates are 

also plotted and connected with a smooth curve in Figure 3. The com­

puted curve does not fit the observed data very well, and the two 

curves diverge at the high and low flow values. The CLF (Qy/ig) is 

estimated from each curve in Figure 3, and the estimates differ by 16% 

of the larger computed number. If no other potential error is present 
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this amount of error can be accepted as typical of a hydrologie analysis; 

however, the additional errors are present in arid/semiarid basins. 

The problems noted above may be explained, at least partially, in 

Figure 4 where the annual 7-day low flows have been plotted in the order 

of occurrence. The plot suggests that a significant change occurred in 

the low flow process after 1952, when the mean annual 7-day low flow 

dropped from 19.3 cfs (1940-1952) to 7.8 cfs (1953-1969). Both time 

periods contain wet and dry years, so the change probably is related to 

events in extensive irrigation practices above and below this gage. 

The last data point, 1970, may be indicating a return to the earlier 

flow magnitudes, but the number of observations is not sufficient yet 

to draw any firm conclusions. The change in basin conditions causing 

the 1952 change could not be identified, but the latter change, if it 

is confirmed, is probably related to sale of the Las Animas Town Ditch 

water rights and the subsequent movement of the point of diversion 

many miles upstream. The data string appears to be time variant which 

accounts for part of the lack of fit and estimation error demonstrated 

above, i.e. the process is nonstationary. 

Since man's activities in arid and semiarid basins can alter the 

low flow process, long data strings will probably include samples from 

several dissimilar populations. This raises serious questions about the 

usefulness in such areas of an established hydrologie "sacred cow", 

the long data string. If frequency distribution techniques are to be 

used for low flow estimation on regulated streams, estimation accuracy 

can be improved by using shorter but more recent segments of the long 

data strings even though many degrees of freedom are lost. 
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But the time variant problem, is not the only low flow estimation 

problem encountered in arid and semiarid areas because irrigation and 

other regulation activities are not uniform along the axis of streams. 

For example, intensive irrigation usually produces overdrafts on both 

surface and groundwater supplies during low flow periods; and, therefore, 

the surface streams will be losing flow to the alluvial aquifer. Near­

by stretcheŝ  or reaches with little irrigation activity can have a 

reverse surface-groundwater relationship. As a result, the data from 

a gaging station affected by the first stretch will represent a different 

low flow process than the data from a gaging station affected by the 

second stretch or reach. This line variant character of the low flow 

process makes the use of regional approaches (where a single set of 

distribution parameters are estimated from several data strings in a 

region) subject to large potential error. Line variant processes are 

called nonhomogeneous, as defined by Yevjevich [8]. 

The line variant element introduces potential error, but the nature 

of stream regulation and irrigation diversions can introduce even 

greater potential errors. Estimates of CLF are usually required for 

effluent discharge points located between two gaging stations so 

interpolation between the two gage estimates is required to develop the 

estimate. Increases and decreases in streaxa flow usually occur as 

discrete steps along the stream's flow line, but a straight line 

A stream "reach" is herein defined as the stream segment between 
two adjacent points where a discrete hydraulic or hydrologie charac­
teristic changes, and a "stretch" is a series of reaches between two 
specified boundaries. The stretches are usually bounded by confluences 
or gages. In this dissertation the boundaries are gages. 
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interpolation between stations assumes a uniform continuous change. 

Therefore, in the vicinity of large discrete flow changes, the low 

flow estimates will have large errors unless specialized interpolation 

methods are used. 

Low flows in arid and semi arid basins are often very small numbers. 

Zero flows are not uncommon. The smallness of these flows has two 

implications in low flow analysis. First, zero flows preclude the 

direct use of logarithmic distributions which are the preferred 

distributions. The USGS developed a variation of the Log Pearson 

Type III analysis that estimates the parameters with the zero flows 

excluded and then adjusts the distribution to account for the missing 

zero flows. However, a description of the procedure could not be ac­

quired by the author so the statistical validity of the procedure has not been 

evaluated. The second problem caused by the small magnitude of the 

low flows is an increase in the potential error in the gage data. 

Many gages in arid and semiarid areas must record a broad range of 

flows, and the streambeds are often wide and flat so that control 

sections for low flows are difficult or impossible to construct. As 

a result, the stage-discharge relationship at the gage can change 

dramatically over short time periods, introducing additional errors in 

the data and yielding less reliable information for low flow analysis. 

This introductory discussion has defined a serious problem area 

concerning low flow estimation in arid and semiarid climates. The 

problems arise from the nonstationarity and nonhomogeneity of the low 

flow processes, discrete flow changes of large magnitudes, and low 

flow measurement errors. The research documented in this dissertation 
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presents an alternate approach to low flow estimation in arid and semi-

arid areas and develops part of the new tools required to implement 

the alternative approach. Any new approach must satisfy several criteria 

that are considered desirable in low flow estimation techniques. 

These criteria are: 

1. the duration element must be included, 

2. the probability of occurrence element must also be retained, 

3. the technique must not be so complex and expensive that it 

will not be used by water quality management agencies and their 

personnel, 

4. the method in so far as possible must use available data, and 

5. the method must be responsive to changing conditions. 
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DEFINITION OF THE RESEARCH PROBLEM 

The goal at the start of the study was to investigate all 

elements of the problem and its solution (physical, economics, and 

institutional) with the end product being a complete and implementable 

low flow estimation method for arid/semiarid regions. As the study 

progressed it became apparent that it would not be possible to achieve 

this goal within the constraints of available time and funds. There­

fore, the immediate goal of this study became a technical one, and 

efforts were focused on that part of the problem. The remaining portions 

of the problem were placed in a future research context. The following 

discussion develops three research areas within the main subject area, 

and a general scope of study is developed for the two future research 

projects. Then a detailed definition is developed for the research 

reported in this first phase of the overall problem area. 

The Total Research Problem 

An accepted approach to research involves the proposal of a 

hypothesis concerning a problem followed by the testing of this hypothesis. 

The basic hypothesis for this low flow estimation problem has been 

developed from a set of conditions often found in arid and semiarid 

basins but seldom found in humid and subhumid basins. 

In arid and semiarid basins the river flows are usually regulated 

according to a "water law" and a set of "water rights" that have been 

legally established according to the water law. As a result of this 

regulated condition, the flow (and especially the low flow) passing any 
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particular point is often determined by the nature of the water rights 

downstream. Thus, in the estimation of low flows in regulated basins it 

may be more appropriate to utilize downstream variables instead of the 

upstream variables. This concept is distinctly different from the 

humid/subhumid basin approach where flow magnitudes are related to 

numerous upstream hydromorphic and geomorphic factors. Several studies 

have evaluated some of these relationships [13, 14], and Orsborn [15] 

has presented a concise review of these methodologies. 

Three classes of water law are found in the United States which 

allocate water according to (1) the Riparian Doctrine, (2) the Prior 

Appropriations Doctrine, or (3) administration of legislative mandates. 

The second Doctrine is the most common approach found in arid and semi-

arid areas in the U.S. and will be the only method considered in this 

study. The many variations among State water laws is documented by 

Hutchins [16]. 

Under the Prior Appropriation Doctrine, the water law recognizes 

the right to divert water for beneficial use with priorities established 

among rights on the basis of initial time of diversion. A diversion 

right (the senior right) has priority over all rights (the junior 

rights) that were initiated later in chronological time as established 

in a court of law. These priorities are the basis for the regulation 

of river flows by controlling which rights are permitted to divert 

water. A regulatory authority establishes a "call date" which is 

the initial appropriation date of the controlling right, i.e. the 

right that will divert all of the streamflow available at its point of 

diversion. The controlling right is often only partially fulfilled. 
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The call dates vary with the available flow and can change daily. Call 

dates are often changed intuitively by the authority, such decisions 

being based on years of experience. Furthermore, the date can also 

be changed when a diverter is not receiving the magnitude permitted 

by his full right and places a "call on the river". Calls by senior 

rights force junior rights to stop diverting. So the streamflow 

passing a particular point during low flow conditions usually consists 

of the flow elements necessary to satisfy senior downstream rights. 

The basic hypothesis underlying this research is that low flows in 

regulated basins can be estimated from a conjunctive analysis of the 

set of water rights used in the regulation of the basin and the 

hydrologie and hydraulic characteristics of the surface water system. 

However, this hypothesis is constrained to include only those regulated 

basins where at least one diversion or a minimum flow requirement 

establishes a controlling flow sink. This condition is commonly ex­

perienced in over-appropriated basins during low flow conditions. 

A low flow estimation procedure incorporating water rights should 

include two basic analytical steps. 

Step 1. Predict the controlling water right(s) and identify all 

senior rights that would also be diverting water. 

Step 2. Estimate the low flow at the desired point using a water 

balance model for the stream segment between the estimation point and 

the nearest downstream controlling water right. This procedure was 

chosen for further study because it fulfills the five criteria for a 

new estimation method described in the previous chapter. The duration 

and probability elements will be included in Step 1, and the response to 
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changing conditions will be included in Step 2. Furthermore, the method 

utilizes available data and available analytical techniques. However, 

tools are not currently developed for either step; and, therefore, 

each step raises several research topics. 

Future Research Projects 

Separate research efforts can be pursued in (1) the development of 

a Step 1 methodology and (2) the examination of the economic implica­

tions of implementing this new estimation procedure. General scopes 

of study for both areas are discussed below. 

Step 1 study 

Two separate methods for accomplishing Step 1 have been identified. 

These are: 

A. Apply a frequency analysis to the call dates of record, and 

B. Correlate a key gage flow with the call date record and use 

a frequency analysis on that gage's data string. 

Applying a frequency analysis to the call dates will require the evalua­

tion of fit between available distributions and the data. Such research 

would also require the evaluation of methods for including the duration 

element. Furthermore, a 0.1 nonexceedence probability of a flow may not 

correspond to a 0.1 probability of occurrence for a specific call date 

so this question would also need evaluation. Also, call date data 

may not be as readily available or as accurate as gage data in some 

basins. Because of these potential problems the second method may be 

the preferred approach. 
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A question that arises in considering method B is how to select 

the best gage for correlation to the call date data. One criterion 

should be to select a gage that has a historical data string shewing 

minimum effect from regulation practices; however, this criterion may-

force selection of a gage far upstream from the stretch being analyzed 

which might adversely affect the accuracy of the analysis. At the 

beginning of this study a correlation between USGS gage No. 07099400, 

near Pueblo, Colorado, and the call date record for the Arkansas 

River basin was attempted, and the results showed little correlation. 

The cause of the lack of correlation appeared to be the large quanti­

ties of imported water̂  being transported past this gage in the 

river. Imported water is stored in the reservoirs in the headwaters 

of the basin and is released on demand for river transport to the 

diversion point of the water owner. Each release is called a "river 

run", and several river runs are usually in progress at any time during 

the common critical low flow periods. Reservoir release records are 

available which could be used to predict river run hydrographs at gage 

stations. Subtracting these predicted hydrographs from the gage data 

should produce an estimate of the natural flow passing the gage. The 

accuracy of the estimate will depend on the accuracy of the hydrograph 

model. Luckey and Livingston [17] have developed a routing model 

for the Arkansas River in Colorado that estimates the reservoir release 

hydrographs, and additional development of this model is currently in 

""Imported water" is water that has been diverted across a basin 
divide, often called transmountain diversions. Imported water is common 
in basins with high water demand and a scarce supply. 
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progress. Since the river run hydrograph estimation is a key element 

in developing a usable procedure for Step 1, further work on the Step 1 

problems is postponed until the Luckey and Livingston model is fully 

developed. 

Economic Study 

The connection which exists between the water quality management 

activity of low flow estimation and the water quantity allocation systems 

developed under the Prior Appropriation Doctrine creates a research 

need in the economics area with support from the legal and engineering 

fields. The research should evaluate : 

1. the impact of the introduction of water quality management 

into the water allocation system on the socio-economic structure of the 

arid/semiarid regions, and 

2. the water quality management activities in which water alloca­

tion modifications will be a feasible alternative. 

If the water quality management role in water allocation always appears 

to result in a regional or national social benefit/social cost ratio 

less than one then the implementation of a more responsive low flow 

estimation technique will be inadvisable. On the opposite end of the 

spectrum changes in the water allocation system may never be economically 

feasible alternatives so the adoption of the new technique will depend 

only on the benefit/cost relationships within the water quality area. 

In between these two extremes lie many combinations of water quality 

management policy and socio-economic impacts through the water allocation 
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system, and clarification in this middle area is the general purpose of 

this second phase, economic-institutional study. 

Water quality and water allocation can interface in several ways 

if the low flow estimation technique can respond immediately to changes 

in the allocation system. One mechanism involves relocation of senior 

water right diversions to a point below the effluent discharge point, 

thereby increasing the amount of flow receiving the discharge. Changes 

in beneficial use and consumptive use would not be required to implement 

this mechanism so water quality management would not have to become a 

legally defined beneficial use. This mechanism would undoubtedly re­

quire a payment by the discharger to the water rights owners to accomplish 

the relocation or the outright purchase of the necessary rights by 

the discharger. A second mechanism can develop if water quality be­

comes a legally defined beneficial use. Both mechanisms would probably 

include the development of a new "minimum flow right" concept which can 

be generally defined as a right to have a specific flow magnitude met 

or exceeded at a discharge point whenever the minimum flow right is in 

priority. Owners of junior minimum flow rights might also affect the 

allocation system by blocking the relocation of senior rights that 

would adversely affect their right. This mechanism will require only 

the Step 1 analysis of the two step low flow estimation procedure, but 

its development is improbable because several constitutional, judicial, 

and legislative actions will be required. Since the first mechanism 

requires little change in the existing allocation systems the following 

discussion of the economic study assumes the first mechanism is the 

implementation interface. 
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The economic study should include two distinct study phases. 

Initially the study should develop predictive tools which can then be 

used in a normative approach to water quality management. This second 

phase will probably be limited to a demonstration of how to use, in a 

normative manner, the predictive tools developed in the first phase. 

The predictive phase of the study will first require the develop­

ment of two cost models for 1) estimating treatment and/or process 

costs as a function of treatment effectiveness and 2) estimating the 

cost of acquiring water rights. The first cost model will be relatively 

easy to develop because the Environmental Protection Agency (EPA) has 

published extensive reference material in this area. 

However, the second cost model will require considerable collection 

of data, and the definition of the model structure will be more complex. 

The past research in this area is limited and difficult to locate so 

this cost model will require the evaluation of past water right trans­

fers. The value of a water rigjht that is being purchased for readjudica­

tion is primarily a function of three factors, 1) the right's historical 

yield record, 2) the amount of water the rî t has historically used 

consumptively, i.e. the amount of water not returned to the surface 

water system, and 3) the temporal occurrence of that consumptive use. 

The historical yield record can be stated in terms of frequency of 

occurrence for various quantities, e.g. average annual yield in 

ac. ft./year; and this analysis can be developed for recorded right 

transfers from readily available data. The consumptive use can be 

calculated using an engineering analysis based on known past uses of 

the water rigjht or can be drawn from the court records involving the 
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historical transfers if the testimony adequately covered this area. 

These records will also» determine or establish the temporal use period. 

The amount of consideration involved in each transfer can probably be 

obtained from the court records or, more likely, extracted from the 

county revenue tax records. Evaluation of this element of the cost 

model may be difficult because many water right transfers are conçlex, 

e.g. several parties may be involved or nonmonetary consideration may 

be appraised at a level above or below true market value. Furthermore, 

water right transfers can include large legal and engineering costs 

that must be estimated. The mathematical model that best represents 

the functional relationship between these three cost elements must also 

be determined in the study. The development of this cost model for the 

valuation of water rights is considered to be a sizable research 

effort by itself. 

Once these two cost models are developed, the predictive phase of 

the economic study must relate the two activities, water quality manage­

ment and water rights transfer, to regional resource allocation. This 

critical second step will require the development of an allocation model 

that can predict the distribution of capital, labor, and resources 

with various levels of competition for water rights from the water 

quality management sector. The structure of this allocation model 

is not intuitively obvious, so an initial task in this research 

element will be the selection of the best analytical procedure. Three 

approaches will deserve serious consideration, and they are : 1) optimiza­

tion, 2) simultaneous equations, and 3) simulation models. At this 

early stage of problem definition the linear programming optimization 
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model appears to be the preferred analytical tool because the allocation 

process is usually defined in terms of optimizing some personal benefit 

such as profit, but the application of the econometric simultaneous 

equation approach on a regional basis may prove to be easier to apply 

or more effective. These three approaches have large data requirements 

so the data bank limits may force the use of a less data intensive 

regional approach. 

When the allocation model is completed the normative phase of the 

study can then provide some water quality management guidelines. The 

predictive tools can be used to evaluate the following water quality 

management impacts in terms of rational and/or regional norms [18]: 

1. the effect on the value of goods and services, 

2. the effect on economic efficiency, 

3. the effect on income distribution and the nature of the labor 

force, 

4. the effect on the stability of the regional economic base, 

and 

5. the effect on current demographic trends. 

The qualitative and/or quantitative definition of these effects is the 

desired end product of this second phase, the economic research plan, 

and the first phase results can then become the input to decision 

processes in both the water quality management and the water alloca­

tion areas. 
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Current Research Problem 

The basic hypothesis underlying the research into Step 2 is the 

acceptance of an hydrologie budget model as a suitable water balance 

model. Hydrologie budget models are based on mass balance analysis of 

all or part of an hydrologie unit such as basins, aquifers, or flowing 

and standing surface water systems. The hydrologie budget model developed 

in this study uses a stream segment as the basic hydrologie unit. 

A physical model of a stream segment is depicted in Figure 5. The 

inflow to the segment from the adjoining upstream segment is designated 

QIN̂ , and this inflow, the dependent variable, is estimated from a 

function including all of the other inflows and outflows, the independent 

variables, shown in Figure 5. The segment outflow designated QOTJT 

is the ultimate sink for the stream segment flow and will be either a 

known diversion or a known minimum flow requirement. The flow QDIS 

represents the known or accurately estimated discrete discharges serving 

as additional inflow to the stream segment. These additional inflows 

would include inflows from gaged tributaries, industrial and publicly-

owned wastewater discharges, and any other discharge which has been 

measured or can be accurately estimated. Conversely, the flow QDIV 

represents the known or accurately estimated diversions which include 

irrigation, municipal, and industrial diversions. The Distributed 

Inflows shown along the upper surface edge of the stream segment 

represent the unknown or difficult to estimate inflows which include 

\menever possible descriptive acronyms are employed that are 
compatible with the variable designations used in the computer analysis. 
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surface runoff from precipitation or irrigation tail water̂  that enters 

either the stream segment or the ungaged tributaries, and waste irriga­

tion water discharged by canals. The Stream-Aquifer Water Exchanges 

(SAWE) represent either groundwater infiltration or groundwater exfiltra-

tion occurring at the wetted stream bed surface and are also distributed 

along the stream bed length. Because the stream segment surface area 

is small during low flow events (excepting segments containing active 

reservoirs), the inflow from precipitation on the stream surface and 

the outflow from stream surface evaporation are assumed to be negligible 

and are not included as separate variables in the model. This as­

sumption is reasonable because any impact from these two variables 

will be assimilated into the Distributed Inflow variable(s). 

The stream bed and the planes denoting each end of the stream bed 

are fixed surfaces, but the stream surface can rise or fall. As a 

result of stream surface changes, the amount of water stored in the 

stream segment changes, and this potential change in storage. As, is 

also represented in Figure 5. Low flow conditions are typically near 

an inflow-outflow equilibrium so the As variable should assume a value 

of approximately zero at low flow; however, the estimation of model 

parameters must utilize data drawn from a broader range of flows which 

will include a As effect, so the basic model must include this variable. 

Irrigation tail water is water applied to a field that runs off 
before it can evaporate or percolate into the soil. 
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The mass balance equation used in hydrologie budget models is: 

Z Inflow = S Outflows + A Storage (4) 

where increases in storage are positive (+) values and decreases are 

negative (-) values. The vairiable groups shown in Figure 5 are substi­

tuted into equation 4, and the equation is rearranged to produce: 

QIN = QOUT + QDIV - QDIS - DISTRIBUTED INFLOWS 

+ STREAM-AQUIFER EXCHANGES + AS (5) 

Exchanges from the stream to the aquifer are assumed to be positive (+) 

by the model. Equation 5 is used in this study to test the basic 

hypothesis stated on page 33. 

If equation (5) proves to be an acceptable water balance model, 

the model will fulfill the "response to changing conditions" criteria 

(#5) in the preceding chapter. For example, assume a low flow QIN has been 

estimated using the active diversions selected in Step 1 as the independent 

variables QOUT and QDIV and a calibrated water balance model from 

Step 2. Subsequent to the estimation of the low flow QIN one of the 

diversions is moved a considerable distance upstream or downstream from 

the location of QIN, thereby altering the true low flow QIN. A reasonably 

good estimate of the effect of the diversion relocation can be ob­

tained immediately by removing that diversion from the independent 

variables, and this revised estimate can be irqjroved by recalibrating 

the water balance model as soon as a year or two of new data can be 

collected. Changes in discrete discharges, land use, and irrigation 

practices can also be incorporated in a similar manner. 
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Three criteria were selected to test the basic Step 2 hypothesis 

stated above. These criteria are: 

1. the expected error must fall within the typical range of 

hydrologie predictions, usually 20-25% of the mean, and should 

approach the expected error range of low flow estimation methods in 

current use, 

2. the signs (+ or -) of the estimated parameters must conform 

with the relationships shown in equation 5, and 

3. the model must be stable in the low flow ranges, as evidenced 

by reduced variance between observed and predicted values. 

The utilization of these criteria is discussed more completely in the 

next two chapters. 
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PROCEDURES 

The basic procedure followed in this study is to select the pre­

ferred analytical method and then estimate the parameters of a water 

balance model for a portion of an existing regulated river basin. 

The adequacy of this sample model is then evaluated in terms of the 

criteria presented in the preceding chapter, and this evaluation is 

presented in the next chapter. This chapter discusses the selection 

of the analytical method, the selected basin segment, the development 

of the independent variables and the analytical techniques utilized in 

developing and evaluating the water balance model. 

Selection of Analytical Method 

Three analytical methods were considered for this study, 

(1) Simulation, 

(2) Mathematical ̂ ogramming, and 

(3) Multiple Regression. 

Simulation involves the development of a mathematical model based 

on an intimate knowledge of the simulated system(s). Simulation models 

often contain several smaller models of well-defined subsystems, and 

this aggregation feature makes simulation a versatile technique that 

can analyze a macro system composed of dissimilar micro systems. For 

example, simulation can be used to analyze a system containing both 

linear and nonlinear submodels. In addition simulation models can 

include feedback or feedforward relationships and optimization 

submodels. Simulation usually involves a three-step process. First, 
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the composite model is developed from a knowledge of the basic system. 

Then the model is calibrated using existing data so that the model pro­

duces a dependent variable string similar to the observed values when 

the model is stimulated with the observed independent variable strings. 

Finally, the calibrated model is stimulated with lengthy data strings 

generated from probability distributions and random numbers. The 

probability distributions are developed from the existing data strings 

of the independent variables. Hillier and Lieberman [19] present an 

overview of simulation methods. 

The versatility of simulation is usually the reason for its selec­

tion as an analytical method; however, the method also contains several 

features that make it unattractive for this study. First of all, the 

method requires intimate knowledge of the subsystems, and many of these 

subsystems in a river segment cannot be defined with enough accuracy 

to justify the use of simulation without incurring large data acquisi­

tion costs. Furthermore, the calibration of a simulation model involves 

the discrete changes of individual parameters within a sequence of 

simulation runs; and this process continues until the simulated dependent 

variable string best fit the observed values. While statistical 

methods can be used to define "best fit", the method does not guarantee 

an optimum "best fit" in a multiparameter model unless all combinations 

are investigated. As a result, simulation is often a very expensive 

method. The calibration process also does not provide an estimate of 

parameter sensitivity so an additional sensitivity analysis must be 

performed. The calibration process also does not provide an estimate 

of the adequacy of the basic model structures. As a result, a model 
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that adequately simulates an observed data string may produce large 

errors when extended beyond the conditions that produced the observed 

data string. Because of these analytical and cost problems, simulation 

was not selected as the basic analytical method for this study. 

Multiple regression and mathematical programming are both optimiza­

tion methods (the latter is actually a group of optimization methods) 

that can provide "best estimates" of the water balance model parameters 

using some preselected optimization criterion. Multiple regression 

uses the optimization criterion that the best parameter estimates are 

provided by the model that minimizes the sum of the squares of the 

differences between the predicted and observed values of the dependent 

variable corresponding to each set of independent variable data. This 

criterion is called the "least squares" criterion. 

Mathematical programming contains several analytical methods that 

can utilize other optimization criteria. For example, linear pro­

gramming could be used with the optimization criterion of minimizing the 

sum of the absolute value of the difference between the observed and 

predicted values of the dependent variable. Mathematical programming 

also contains a method, quadratic programming, that can use the same 

least squares criterion used in multiple regression. However, this 

additional flexibility in choosing an optimization criterion requires 

compromises in the nature and amount of information that can be ex­

tracted from the application of most mathematical programming methods. 

For example, in applying a mathematical programming technique the 

parameters of the water balance model would be the variables in the 

mathematical programming model, and the variables of the first model 
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would become the parameters of the second model. Since the parameters 

of the mathematical programming model would be random variables, the 

analysis should estimate the effect of the probability element, but 

such an analysis is very awkward in even the best developed mathematical 

programming methods. Similarly, the optimal solution of the mathematical 

programming model would provide point estimates of the desired parameters 

but would not provide significance or confidence interval estimates 

without a considerable amount of extra analysis. As a result of these 

compromises, the use of mathematical programming would also be expensive, 

and the examination of several water balance model configurations would 

be very time consuming. 

Multiple regression, on the other hand, does provide several 

statistics about the parameter estimates in an efficient manner including 

the two mentioned in the above example. These statistics are discussed 

later in the presentation of the techniques used in this study. Further­

more , the computer software required to perform a regression analysis 

is also better developed and more readily available than the software 

required for a mathematical programming analysis. Finally, no strong 

argument exists for the adoption of an optimization criteria other than 

least squares; and, given certain assumptions about the variables, the 

least squares criterion adds three desirable characteristics to the 

analysis, which are : 

1) the least squares parameter estimates will be the minimum 

variance unbiased estimates among the class of linear estimates (this 

is the Gauss-Markov property). 
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2) the least squares estimates may also be the maximum likeli­

hood estimates, and 

3) the method using least squares can be extended to include 

nonlinear models. 

Some of the assumptions required to realize these characteristics are 

not fulfilled by stream gage data so these advantages cannot serve 

as the basis for choosing the least squares criterion for this study, 

but the possibility of incorporating even a portion of these features 

does encourage such a choice. 

As a result of all of the above considerations and after re­

viewing the nature of the research problem, the linear multiple regres­

sion method is selected as the basic analytical method for this study. 

The regression procedure is used in the following model development 

process. 

1) Select a sample basin that contains most of the problems 

usually associated with regulated basins as discussed earlier and 

construct a water balance model for the sample basin. 

2) Select a time period(s) from which observations can be 

drawn and a time interval between observations. 

3) Construct one or more variables from available data in the 

sample basin and selected time period that will represent each of the 

model elements defined by equation 2 in the previous chapter. 

4) Estimate the parameters in equation 2 using multiple linear 

regression with each set of variables for a unit time period repre­

senting a single observation. 
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5) Evaluate the estimated parameters in terms of the criteria 

presented in the previous chapter using the tools described below. 

The Study Sample Area 

A segment of the Arkansas River in Colorado was chosen as the 

sample basin, and the location of the segment is shown in Figure 6. 

The study segment is bounded by USGS Gage 07109500 located near 

Avondale, Colorado, and by USGS Gage 07130500 below John Martin Dam 

near Hasty, Colorado. This river segment is a desirable study subject 

for several reasons. 

1) The basin is intensively irrigated near the river from the 

Royal Gorge above Canon City to the Colorado-Kansas boundary. This 

irrigation has created a very large demand for water resulting in 

decreed water rights for more than seven times the basin's average 

annual yield. As a result water scarcity is a common event. The 

river is often reduced to zero flow by senior water rights. 

2) The study segment is located near Pueblo, Colorado, which is 

a very large growing industrial center. The expanding water needs for 

industry and the associated population has created a very competitive 

market for water rights which is a desirable condition for economic 

studies. 

3) This segment lies within the area influenced by two large 

water resource developments, the John Martin Reservoir and the 

Fryingpan Arkansas project. Since water resource development is 
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common in scarce water areas, the study segment shares this common 

element with the general population of regulated basins, 

4) The intense competition for water and the water resource 

developments have spawned several hydrologie studies of this basin 

which provide a good source of data for this study. Some of these 

studies are discussed below. 

The study segment is presented in more detail in Figure 7 with the 

river flowing frcxn left to right. The study segment was divided into 

five subsegments that are designated as Stretches 1 through 5. 

The stretch boundaries are defined by USGS gaging stations, and 

throughout the study the upstream gage data in each stretch is used as 

the stretch inflow, QIN, and the downstream gage data is used as the 

controlling sink, QOUT. In the four downstream stretches, the QIN 

data is also the QOUT data for the adjacent upstream stretch. Table 2 

lists the USGS data. In the balance of this dissertation gage 

identification numbers are shortened to the four middle digits shown 

in parentheses in Table 2. The use of five stretches instead of a 

single long segment permits the estimation of paramters for each 

individual stretch or for the whole segment. 

The Arkansas River and its tributaries in the study area are 

incised into sedimentary rocks of the Upper Cretaceous period. The 

river has carved a wide, gently sloping valley and has filled the 

valley with alluvial deposits which form a large aquifer that is 

hydraulically well connected with the surface waters. The irrigated 

areas are generally confined to the area overlying the aquifer so the 
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Table 2. Definition of stretches 

uses ID# USGS II# Stretch 
upstream downstream length 

Stretch boundary boundary in 
number gage gage miles 

1 07(1095)00 07(1170)00 17.9 

2 07(1170)00 07(1197)00 21.2 

3 07(1197)00 07(1230)00 30.1 

4 07(1230)00 07(1240)00 24.6 

5 07(1240)00 07(1305)00 23.1 

water lost to deep percolation from the fields will eventually return 

to the river. 

The climate in the segment area is semiarid with annual rainfall 

being less than 14 inches. Rocky Ford, which is located near the 

center of the segment, receives an average annual precipitation of 

12.31 inches which includes 23.1 inches of snow. Precipitation in the 

area usually occurs as intense storms of short duration, and flash 

floods are a common hazard. Temperatures are generally high, and 

humidity is low. 

A schematic diagram of the surface water system near the Arkansas 

River has been prepared for the river segment from Pueblo Reservoir to 

the outflow gage in stretch 5 below John Martin Dam and is presented 

in Figure 8. The schematic shows all surface waterways including the 

Arkansas River, the tributaries, standing bodies of water, and all 

irrigation ditches including waste lines. The acres of land covered 
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Î XY NNICCANIL 
/éS4 \97o\ 96t 

yCATUM CANAL 

\OT, 

|~ /43** 
fOCKY FOND MISUUMC CAMAL 

OTE/tO CANAL 

LCM.3 

,FYF, - AGRICULTURAL OIVENSIONS 
 ̂ e ACfteS MNteATCD 

LEYCL / 

MMCIPAL $ INOI/SRMAL OIYCKSIOT/S 

POINT SOUKCeS t STNEAM CACes 

fiCffZS OF PNRZATOPHYres 

ARKANSAS RI[̂ £R 

ACftCS OF PNK£AroPHYT£S 

POINT SOUNCes < Sr/f£AM OACeS 

mtUUaPAL (. WOUSTKtAL DIVERSIONS 

LEYO. / 

LEVa Z 

LEYCLS 

L£V£L4 

AG/i/CULTaRAL OlYOrSIONS 
C AOtES IRNieAT£0 



www.manaraa.com

48c 

STftCTCH s STKSTCH * 
rOKT LrOM STMACe CAMAL FORT LYOH STOKASS CAHAL 

j 
HORS£ 
CKEBK Ik, 
RESAFVOW)̂ } 

tac/e/ii6 gfto <dj 

)KT f LYa 

/IO 1 ̂4! 
LYOH CAAfAÙ FOm LTOH CAHAL 

M 

MHM KUUTRW KESEPYOIR 
IS9.9I ttsM 

j t83S 

IAS AZriusT-èbT^LÏôÂT "̂-
CO*fSOC/OAT£D 
O/TCH aertMs/OH tspo 

'jOHEs' D/TCH 
2879 

DITCH is 

Figure Sc. Schematic diagram of the surface water system from Pueblo 
Reservoir to below John Martin Dam, downstream reach 

1 



www.manaraa.com

LVOM STOKACe CANAL 

K/CKJMS BIRD CANAL 

LYON CANAL 

197.3 
JOHH UARTM K£SEPYOIR 

T£D 
'MS/ON 

UV£L Z 
AOHCULTUHAL Diy£HSIOMS 
( ACRES IRRISATED 

L£V£L / 

MUH/C/FAL ( tMOl/STRUL OrOtSIO/IS 

POIHT SOURCES ( STREAM CASES 

ACRES OF FHREATOFHYTES 

ARKANSAS /?/V£K 

ACRES OF PHRCATOFHrTES 

PO/MT SOURCES f STREAM CASES 

MUmciPAL e MDUSTR/AL D/VERSIONS 

LEVEL / 

MUN/CIPAL ( INDUSTRIAL 
DIVERSIONS 

0 neSLO WTF-NO. StOE 
0 Pt/EBLO WTP-SO. SIDE 

DISCHARGERS 

© CFd STESL  

0 PUEBLO STP 

0 FOWLER STP 

0 MANZAMOLA ST  ̂
@ AMEXICAN atrSTAL SZ/SAIf i 
 ̂ FARMLMO FOODS 

0 nocKr Foro srp 

0 LA JUKTA STP 

0 LâS ARIMAS FISH MATCNERr 

0 LAS Annus STP 

® FOKT LfON STP 

LEVEL 2 

LEVEL 3 

AGRICt/LTUKAL DIVERSIONS 
( ACRES IffR!GATED 

LEVEL 4 



www.manaraa.com

49 

by high water consumption plants, i.e. the phreatophytes, and the ir­

rigated croplands are also shown in Figure 8. 

USGS maps (7-1/2 minute quadrangle, scale 1:24000) were used to 

define drainage areas, and the irrigated and phreatophyte lands are 

grouped according to drainage. Most of the phreatophyte areas are 

adjacent to the main channel of the Arkansas River with small areas 

also existing along the St. Charles River, Sixmile Creek, and the 

Purgatoire River. 

The irrigated lands are arranged in a hierarchy according to their 

remoteness from the Arkansas River. The areas directly tributary to a 

stream are shown in the schematic as nearest to the stream and the 

lands tributary to a canal are shown as second, third, or fourth 

levels depending on how many canals separate the land from the stream. 

The tributary acres (first level) can also be divided into those areas 

with discrete return flow structures and those areas contributing along 

a reach of the stream but this study did not require such a de­

tailed definition of the irrigated land. Some second level land is 

directly tributary to the streams through discrete return structures. 

It is important to note that moving downstream a canal usually first 

serves land that is tributary (level one) and then begins serving higher 

level lands as new canals begin diverting. For example, the Otero 

Canal serves levels 1, 2 and 3 land, and the Rocky Ford Highline Canal 

serves levels 2, 3 and 4 lands. In contrast, the Rocky Ford Canal 

serves only level 1 land. This distinction between directly and in­

directly tributary lands is used in this study to weight the impacts 

of the model variables on the stream flow. 
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The lengths and areas shown were measured from (scale 1:15840) 

aerial photos of Bent, Otero, and Crowley Counties that are available 

from the Soil Conservation Service [20, 21, 22] and from U.S. Geological 

Survey topographic maps [23] (scale 1:24000) for Pueblo County. The 

maps represent conditions in the counties at the following dates. 

Pueblo — varies, 1960-1963 

Crowley — 1962 

Otero — 1966 

Bent — 1962 

The river miles shown for the Arkansas River were established by 

setting the river mile at the Pueblo-Otero County line equal to 100 

and measuring relative upstream and downstream distances from the USGS 

and ses maps. The tributaries are dimensioned upstream from their 

confluence with the Arkansas River. The irrigation canals are dimen­

sioned downstream from their point of diversion. 

The amount of detail was considerably greater in the SCS maps than 

in the USGS maps permitting a more accurate definition of phreatophyte 

and crop areas. However, the SCS maps also show areas that have been 

irrigated in the past but are no longer active, and the differentia­

tion between active and inactive areas is difficult. Furthermore, small 

nonproductive areas, i.e. roads and homesteads, are included in the 

measured areas; but large nonproductive areas, i.e. towns, water bodies 

and undeveloped land are not included in the values shown. 

The irrigated areas are also grouped with respect to the ditch 

providing the water. The sum of the acres irrigated by each ditch are 

compared with reported values [24, 25, 26] in Table 3. Some of the land 
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Table 3. Comparison of irrigated acre estimates 

Estimates of irrigated 
acres served by each 

diversion Est. acres Ratios of study Estimated acres 
This (24]3 [25]a [26]̂  not tributary estimates to used for 

Name of diverter study to segment others model variables 

Bessemer Ditch 20827 19500 20000 — 10380 1.07, 1.04 20827 
West Pueblo Ditch 400 400 — 400 1 400 
Hamp Bell Ditcĥ  135 160 — — 135 0.84 135 
Riverside Dairy 
Ditchb 50 50 — - 50 1 50 

Booth Ditch 1231 1400 1400 — 1231 0.88, 0.88 1231 
Excelsior Ditch 2367 1583 2000 — 1213 1.50, 1.18 2367 
Collier Ditch 745 643 — — 0 1.16 745 
Colorado Canal 31611 45000 43000 — 13389 — 31611 
Rocky Ford Highline 
Canal 26027 22500 24000 21579 0 1.16, 1.08, 1.21 26027 

Oxford Farmers Ditch 5892 5250 5000 — 0 1.12, 1.18 5892 
Otero Canal 13969 6866 6000 — 0 2.03, 2.33 7965C 
Catlin Canal 20332 18000 19960 — 0 1.13, 1.02 20332 
Holbrook Lake Canal 8323 16000 16000 — 7677 — 8323 
Rocky Ford Canal 9335 8000 8000 — 0 1.17, 1.17 9335 
Fort Lyon Canal 31299 94000 94000 — 62701 — 31299 
Las Animas Consoli­
dated Ditch 7081 9482 6000 — 0 0.75, 1.18 7081 

Ŝource references are listed in the Literature Cited section with the identification numbers 
shown in brackets. 

Ŝystem not tributary to study segment. 

Ŝee text for method of revising Otero Canal estimate. 
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served by the Colorado and Holbrook Lake Canals are tributary to 

reservoirs, and a large portion of the Ft. Lyon system is tributary 

below the study segment. The crop areas shown for these three systems 

in Figure 8 do not contain these nontributary acres and, therefore, 

the study estimate cannot be compared with the total areas reported 

for each system. The ratios between the areas measured in this study 

and the other reported values are also shown in Table 3 for the re­

maining systems. The system areas in Pueblo County which were esti­

mated from the USGS maps show a random variance between the estimates 

from this study and the other reported values with the estimate for 

the single large system being 4-7% higher in this study. The smaller 

system estimates ranged from 18% high to 16% low with one exception. 

The Excelsior Ditch estimate is 18% higher than one reported value and 

both values are considerably higher than the third reported value. 

Since only a portion of the Excelsior Ditch is in the study segment, 

this discrepancy was not resolved. 

The study estimates derived from the aerial photos (the systems 

below the Collier Ditch in Table 3) range from 2% to 21% high with two 

exceptions. The study estimate for the Otero Canal is more than twice 

the reported values, and the discrepancy is primarily caused by the 

difficulty in differentiating abandoned cropland from active cropland 

in the aerial photographs. Several areas served by the Otero Canal 

have been removed from production in recent years because the systems 

water rights have been sold and transferred. The estimate of cropland 

area served by the Otero Canal was revised for this study by multiplying 

the Division of Water Resources (EtJR) estimate by 1.16 which makes the 
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Otero estimate high by a percentage that is in the same range as the 

other estimates. The revised figure appears in the column of acreage 

estimates used in this study. The second discrepancy involves the Las 

Animas Consolidated system where the DWR estimate does not agree with 

this study's estimate or the other reported value. The Las Animas 

Town Ditch sold its water rights to the Rocky Ford Highline Canal a 

few years ago, and several thousand acres of this system were removed 

from production. Since this change is the likely cause of the dis­

crepancy, the estimate prepared in this study is used because the Town 

Ditch has not been included. 

The acreage estimates presented above are used to calculate 

variables representing patterns of water use along the segment and over 

time. Since the variables do not represent accurate estimates of water 

use, the use of estimates containing unproductive land will not affect 

the study adversely as long as the percentage of unproductive land is 

about the same for each system. The ratios in Table 3 indicate that 

this study's estimates for the systems affecting the study segment are 

clustered around an average overestimate of 13% if the three dis­

crepancies are excluded. Therefore, the study estimates are assumed to 

include an equal percentage of unproductive land and are used to 

calculate variables in this study. 

Surface runoff of irrigation water occurs as tail water from the 

fields which returns as either distributed or discrete flow or as waste 

water from the canals. Most of the canals have a waste connection near 

the beginning and at the end of the canal. These waste connections are 

shown in Figure 8. 
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Municipal and industrial dischargers, USGS gage stations, and 

reservoirs are also shown in Figure 8. 

Four regulation activities affect the stream flow in the study-

segment. 

1) The operation of the priority system affects the amount of 

natural flow in the river and tributaries. 

2) Exchanges of stored water for natural flow affect the amount 

of water in some segments of the stream. 

3) Imported water is transported to the user via the river and 

thus affects the stream flows above the downstream users. 

4) The operation of John Martin Dam can affect the operation of 

the priority system above the dam. 

The first activity has been discussed above, and the other three activi­

ties are discussed below. 

Three of the irrigation systems, (1) the Colorado Canal, (2) the 

Holbrook Lake Canal, and (3) the Fort Lyon Canal system can utilize 

the exchange activity in providing water to irrigators in the upstream 

portions of their service areas. The exchange activity involves the 

simultaneous diversion of flow at an upstream point and the release of 

an appropriate amount of stored water downstream. For example, the 

Colorado Canal often diverts water at its headgate (river mile 76.5 

in Figure 8) and also releases water from Lake Meredith through the 

Fort Lyon Storage Canal to the Arkansas River at river mile 121.5. 

This exchange practice affects the stream flow for a distance of 45 

miles. The ratio of released to diverted water can be established by 

the Division Engineer who is responsible for the operation of the 
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priority system, exchanges, and delivery of imported water and/or by 

agreement with other diveiters in the area. Exchanges are permitted 

only in areas where no senior right can be adversely affected. The 

system acquires the stored water from surface runoff, irrigation return 

flows, natural flow diversions when their storage rights are in priority, 

and/or transmountain water imports. The Colorado Canal system uses 

Lake Henry and Lake Meredith, the Holbrook Lake Canal uses Dye Reservoir 

and Holbrook Reservoir, and the Fort Lyon system uses Horse Creek and 

Adobe Creek Reservoirs and several reservoirs located below the study 

segment. Whenever an exchange activity is operating, the diversion 

and discharge are measured and reported daily to the EWR. 

Imported water is natural flow from another drainage basin that 

has been diverted across the basin divide. Such diversions, often 

called transmountain diversions, are regulated by the priority system 

in the basin of the water's natural occurrence, and the imported water 

is not subject to the priority system in the basin receiving the water. 

Imported water is usually stored in reservoirs near its entry point 

into the basin and is delivered to the user on demand. The water is 

transported in the natural river, and the delivery of a quantity of 

imported water is commonly termed a "river run". The user requests 

delivery from the Division Engineer who decrees the amount and time 

of discharge and diversion. The amount discharged is always greater 

than the amount diverted because the Division Engineer deducts for 

"transit losses". Previous and current transit loss studies have 

been discussed by Livingston [27]. Currently the transit loss is 

calculated as 0.07% per mile of travel, but Livingston's studies indicate 
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the loss may be as high as 0.16% per mile. All gage data between the 

point of discharge and the point of diversion plus the diversion data 

will include the imported water. The effect of imported water is to 

increase the stream flow in affected segments in contrast to the deple­

tion effect of exchanges as discussed above. 

The Arkansas River basin receives imported water from several 

transmountain diversions, and the impacts of these diversions have been 

summarized in the Arkansas River Basin Water Quality Management Plan [28]. 

Of the three largest transmountain diversions, (1) the Homestake Project, 

(2) the Fryingpan-Arkansas Project, and (3) the Twin Lakes diversions, 

the latter two importers have an effect in the study segment. The 

Homestake project diverts water from the Colorado River basin to the 

Arkansas basin and then into the South Platte basin from the Arkansas 

River far above the study segment. A portion of this water reenters 

the Arkansas basin above Colorado Springs but this water is so thoroughly 

consumed that it has a negligible effect on the study segment. 

The Twin Lakes imported water is mostly delivered to the Colorado 

Canal at river mile 76.5, but the Division Engineer has delivered water 

from Twin Lakes to several other diverters in the study segment. The 

Fryingpan-Arkansas Project (FAP) delivers imported water to several 

municipal and agricultural users including several users in the study 

segment. This project is being developed by the Bureau of Reclamation 

and is thoroughly discussed in the Draft Environmental Statement [29] 

for the FAP. Pueblo Reservoir, which is the upstream boundary of the 

schematic diagram in Figure 8, is part of the Fryingpan-Arkansas Project, 

and will soon become the source of imported water deliveries to downstream 
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users. This reservoir may also be used in the future to store winter 

flows for use in the spring which will have a very large effect on the 

wintertime low flow regime in the study segment. 

The fourth regulation activity affecting the surface flows in the 

study segment involves the operation of John Martin Reservoir which is 

located in Stretch 5 of the study segment. This reservoir was built by 

the U.S. Corps of Engineers in the 1940*s for two primary purposes, 

(1) flood control and (2) the implementation of the Arkansas Compact 

[25, 26, 30, 31]. This latter purpose has dictated the operating rules 

of the reservoir. Each year is divided into a winter storage period 

(November 1 to March 31) and a summer storage period (April 1 to October 

31) by the Compact. The stored water is apportioned between the Colorado 

and Kansas users, and the rî t of these users to demand water is 

severely limited during the winter storage period so that storage 

usually occurs. However, the summer storage restrictions permit demands 

far in excess of the supply so the reservoir is usually empty within a 

few weeks after the beginning of the summer storage period. Whenever 

the reservoir contains water, the Colorado users downstream cannot 

place a call on the river above the reservoir which can affect the 

operation of the priority system in the study segment. Whenever the 

reservoir is empty, all inflows are supposed to be passed through the 

reservoir during the summer storage period, and this is the condition 

found during the time period used to develop the water balance model 

in this study. The gage data at the downstream terminus of Stretch 5 

is directly related to the operation of John Martin Dam and deviations 
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from the principle of matching discharge to inflow will affect the 

fit of the model to the data for this stretch. 

A comprehensive presentation of the study segment and adjacent 

areas would be massive because the water resource system is so 

complex. However, the above discussion, while not complete, does 

present the details necessary to support the development of variables 

for the water balance model as discussed below. 

Time Interval Selection 

The selection of the time elements required two decisions. First, 

a time increment between observations must be selected, and then one or 

more calendar time periods must be chosen. The unit time increment 

was chosen as one day for three principal reasons. 

1) A large portion of the available data are reported as daily 

observations or averages, i.e. gaged flows, precipitation, and tempera­

tures . 

2) Low flows are usually stated in terms of minimum daily average 

flow for seven consecutive days, and using time increments longer than 

one day complicates the evaluation of these moving averages. 

3) Using a time increment less than one day would increase the 

data handling task without markedly increasing the accuracy of the 

analysis. 

Two calendar time periods were selected to provide the data base 

for the model parameters estimation. Both time periods were restricted 

to the critical low flow period of July through October. One time 
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period was selected to represent a "wet year", and the other was 

selected to represent a "dry" year. The year 1973 fulfilled the first 

criteria, and 1974 fulfilled the second although October 1974 could 

not be included because the data had not been reported at the time of 

this study. The selection of recent data periods also means that the 

model will represent more recent basin conditions, and this feature 

helped in collecting some of the data. So the selected calendar time 

periods for data definition are : 

July 1, 1973, to October 31, 1973 

July 1, 1974, to September 30, 1974. 

Development of Model Variables 

The structure of the sample model is shown in Figure 9. The data 

base selected above provides a total of 1075 possible observations which 

may be reduced when time lagged variables are used. The independent 

variables are shown as subdivided into hydraulic and other variables. 

This subdivision permits the analysis of the parameters by individual 

stretches for hydraulic variables if the hydraulic factors differ markedly 

between stretches while all other variables whose parameters should be 

invariate between stretches can be analyzed over the whole segment. 

The hydraulic variables include QOUT, QDIV, QDIS, and AS, and the other 

variables include Distributed inflows and Stress-Aquifer Exchanges. 

The results of this subdivision element of the analysis are reported 

in the following chapter. 
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OBSERVATION 
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Figure 9. Sample model structure 
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Discrete flows 

The dependent variable QIN and the independent variable QOUT were 

assigned the reported daily average flows [32, 33] for the upstream 

and downstream stretch boundary gages. As described earlier, the QOUT 

values for Stretch 5 will also be the QIN values for Stretch S + 1, 

e.g. QOUT for n = 1 will also be QIN for n = 216. The accuracy of 

the gage data cannot be well defined, but the potential for error is 

high. The stage-discharge rating curves, which are usually checked by 

USGS staff once or twice a month, were changed during the study period 

for three of the six stationŝ . The change for one station was caused 

by nearby construction altering the natural flow characteristics, and 

the other two gages were affected by natural changes in stream conditions. 

Such calibration changes are typical for gages on streams with alluvial 

stream beds like the Arkansas River in the study segment and are a 

source of potentially large error. Low flow measurements are especially 

subject to large potential error because the control section can change 

so easily in the sandy stream bed. Burkham and Dowdy [34] examined the 

accuracy of gage data on the Gila River in Arizona (the Gila River and 

the Arkansas River in the study segment have similar flow regimes and 

stream conditions) and reported a standard error in the 20-30% range 

for low summer flows at their two study gages. This high potential for 

error is considered in the discussion of the study results. 

The ODIV variable was constructed by summing the reported daily 

diversions [24] within each stretch (see Figure 8) and using that sum 

Harold Petsch, Denver Region, U.S. Geological Survey, personal 
communication, July 1975. 
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as a single observation. Each day in the base data period produces 

five observations in the sample model. For example, July 1, 1973, 

produced observations n = 1, 216, 431, 646, and 861. Practically 

all diversions of any magnitude are measured with Parshall flumes. The 

largest diversions are also equipped with recorders. The data are 

collected, usually daily, by the local Water Commissioner who also 

sets the control gates that regulate the amount of water diverted. 

The diversion will vary during the day as the river stage rises and 

falls, but since the stage changes very little in low flow conditions, 

the diversions are assumed to be invariant during the day. During the 

study the author received a report that some staff gages are set high 

to provide flow measurements less than actual flow, but the report canr 

not be corroborated so no adjustment was made to any diversion data. 

The variable QDIS was constructed in a manner similar to the QDIV 

construction with the exception that discharges (see Figure 8) replaced 

diversions ; however, the construction of this variable was more complex 

because some of the discharges had to be estimated. The variable in­

cludes both gaged tributaries and municipal, industrial, and exchange 

discharges. The tributary data was taken from Division of Water Re­

sources data [24]. Error potential for both sources is discussed 

above. 

The study segment contains 18 known dischargers and discharge 

data are available [35] for only two of the discharges. Six dis­

charges were not included in the study because the daily discharge was 

estimated at less than 25000 gallons (0.04 cfs) which is considerably 

less than the expected errors in the other flow data. Two power plant 
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discharges also are not included as discrete discharges because they 

discharge into sanitary sewer systems and are therefore included in 

another discharge estimate. The Farmland Foods discharge near Rocky 

Ford was overlooked during the model construction resulting in a 

discrepancy of approximately 0.3 cfs [28] in QDIS for Stretch 3. The 

small potential error did not justify revising the model data when the 

error was discovered. The discharge of the Las Animas Fish Hatchery is 

estimated as 3-3.5 cfs by the Division of Water Resources [33]; how­

ever, this discharge is not included in the model because its influence 

on the main stream is considered to be negligible. The discharge oc­

curs in Adobe Creek, 5.2 miles from the Arkansas River, in an intensely 

irrigated area; and the flow in Adobe Creek is often zero according to 

local residents. Evidently the hydrologie factors arising from irriga­

tion activities, e.g. diversions and groundwater pumping, mask any im­

pact from the fish hatchery discharge. The Adobe Creek area is included 

in the distributed inflow variables discussed below. 

Estimates were prepared for the remaining eight discharges. The 

La Junta Sewage Treatment Plant (STP) discharge was estimated from 

monthly total flows that were measured in 1974 [28]. The values were 

taken from a smooth curve plotted through the available data points and 

rounded to the nearest 0.1 cfs. Data were also available for the Fort 

Lyon VA Hospital STP [28], but the data showed practically no seasonal 

daily variations. Weekend flows appear to be 70-80% of weekday flows, 

but all flows round off to 0.2 cfs. The American Crystal sugar plant 

discharge near Rocky Ford occurs only during the sugar beet refining 

season which begins about October 1 each year. This discharge was 
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estimated as 7.7 cfs based on verbal contacts with plant personnel, 

and the estimate is in acceptable agreement with the 8.5 cfs discharge 

limit shown in American Crystal Sugar's NPDES permit [35]. The re­

maining five discharges were estimated [28] from NPDES permit limits, 

populations served, and hydraulic limitations of the treatment systems. 

The discharges range from 0.1 to 1.6 cfs. The techniques used in 

developing these QDIS estimates are prone to large percentage errors, 

but the impact of these potential errors on the model will not be as 

great as the errors discussed above because the discharges are con­

siderably smaller than the diversions and boundary gage flows. 

Distributed inflows 

The Distributed Inflow variable(s) represents the surface runoff 

entering the tributaries and the main stem. This surface flow arises 

from three sources: (1) inflow from outside the study area, (2) precipita­

tion, and (3) the application of excess irrigation water. Three 

variables were developed to simulate the effects of these surface flow 

sources with one variable representing the first two sources and two 

variables representing the effects of the last source. 

No data have ever been collected to determine the surface inflows 

to the study area at the boundary of the irrigated lands. Visual observa­

tions by the author during the summer of 1975 indicated that none of 

the tributaries has any base flow during the low flow periods. 

Numerous contacts with area residents confirmed this impression so the 

model was constructed on the assumption that tributary inflow to the 

study area would occur only as intermittent runoff from precipitation 
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events. This Surface Run Off from Precipitation, SROP, variable was 

constructed from the reported precipitation at a single weather 

station in each stretch. These five stations are known as: 

1. Stretch 1 — Pueblo WSO AP — Index No. 6740 

2. Stretch 2 - Fowler 1 SE — Index No. 3079 

3. Stretch 3 — Rocky Ford 2 SE — Index No. 7167 

4. Stretch 4 ~ La Junta FAA AP — Index No. 4720 

5. Stretch 5 — Las Animas — Index No. 4834. 

All five stations are in Division 1 of the Environmental Data Service. 

The stations used for stretches 2 and 3 are located near the center of 

the stretch, and the stations for stretches 4 and 5 are located at the 

western boundary of the stretch. The station for stretch 1 is about 

ten miles west of the stretch's western boundary. Most precipitation 

events in the study area move in an easterly direction, and this element 

influenced the selection of the stations. The daily precipitation 

amounts are summarized in Table 4. The largest daily event was 1.82 

inches which occurred in stretch 3 on the same day (9-26-73) as the 

maximum event in stretches 2, 4 and 5. The other three events over 

one inch also occurred in 1973. The summary in Table 4 illustrates 

that precipitation events in the study area during the data base period 

were infrequent, ranging from 29 to 62 events out of a possible 215 

events, and were low in magnitude with a large majority of events 

being less than 0.25 inches. 

The SROP variable was developed in five different configurations. 

SROP is the string of daily observations with no transformations, and 

SROPl is SROP lagged one day, SR0P2 is SROP lagged two days. SR0P3 and 
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Table 4. Sxmnnary of precipitation data (number of daily values) 

Precipitation 
range Stretch number 

(in/day) 1 2 3 4 5 

0 - 0.25 47 25 28 40 21 

0.25 - 0.50 8 8 5 2 4 

0.50 - 1.00 6 2 2 3 1 

1.00 - 2.00 1 1 1 1 3 

> 2.00 _0 _0 _0 _0 _0 

Totals 62 36 36 46 29 

SR0P4 were constructed by adding portions of previous events to the daily 

values. The equations are : 

SR0P3 = SROP +0.5 SROPl (6) 

SR0P4 = SROP + 0.6 SROPl + 0.2 SR0P2 (7) 

The variables SROP, SROPl, and SR0P2 were used conjunctively, but the 

variables SR0P3 and SR0P4 were never used conjunctively with any 

other SROP variable. 

Time lagged variables were used in the model to simulate the typical 

time delayed impacts of precipitation events on stream flow. The 

principle is illustrated in Figure 10 where a sample composite hydro-

graph has been constructed for three discrete identical precipitation 

events occurring on three consecutive days. Prior to the beginning of 

event 2 the hydrograph represents only the impact of event 1; however, 

following the beginning of event 2, the hydrograph represents the im­

pacts of two or more events. For example, the stream flow at point C 
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C is composed of segment AB which resulted from event 1 and segment 

BC which resulted from event 2. Similarly, flow G is composed of three 

segments, DE, EF, and FG, representing each of the three events. 

When the variables SROP, SROPl and SR0P2 are used in the model, the 

regression procedure will determine the relative impact of the individual 

events within the parameters. On the other hand, SR0P3 and SR0P4 

establish the relative impacts of previous events before parameter estima­

tion. The relative merits of these different configurations are dis­

cussed in the following chapter. 

Two variables were constructed to represent surface runoff from 

irrigated cropland. The TRibutary Water ̂ plied, TRWA, variable is 

associated with cropland that is directly tributary to the river or its 

side stream. Land tributary to return flow structures passing under 

canals is also included in the TRWA variable if the return flow is then 

tributary to a stream. The NonTRibutary Water ̂ plied, NTRWA, variable 

is associated with cropland that is tributary to another irrigation 

system and will eventually reach the surface stream system after some 

time delay. Cropland tributary to streams or reservoirs above a 

gaging station is not included in either variable because the gage 

records serve as the inflow variables for those areas. The separation 

of this distributed inflow variable is based on the assumption that 

tributary areas will have a significantly larger impact on stream flow 

than the nontributary areas, and the validity of this assumption is 

discussed in the following chapter. 

Both variables, TRWA and NTRWA, are constructed by the same method. 

The basic equation is : 
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m lA *WD *DE 
TRWA ̂  (or NTRWA = Z (8) 

x=l X 

where TRWA (or NTRWA ) is a distributed inflow variable for stretch s, 
s s 

lA is the irrigated acres in stretch s (either tributary or nontributary) 
xs 

served by ditch X, WD̂  ̂is the water diverted by ditch X on day t, DÊ  is the 

ditch efficiency of ditch x, and TÂ  is the total number of acres 

served by ditch x. The summation includes the m tributary (or non-

tributary) ditches in stretch s. The development of estimates for ir­

rigated acres in each stretch and in the total system for each ditch 

has been presented above. The water diverted was taken from the daily 

diversion records [24] of each ditch, and this data source has also 

been discussed above. The ditch efficiency is an estimate of the portion 

of the water diverted at the headgate that will actually reach the crop­

land, and these estimates were provided by the Bureau of Reclamation's 

Fryingpan-Arkansas Project officê . The efficiencies used in this 

study averaged 55.27» and ranged from 42.6% to 64.1%. 

The TRWA and NTRWA variables are similar to the QDIV variable 

since diversions are a basic part of both variables; however, the 

differences in the variables are large enough to justify using all of 

these variables in the model. The basic difference between the variables 

is that TRWA and NTRWA contain some diversions from upstream areas 

while QDIV contains some diversions that do not appear in the other 

two variables in that same stretch. 

P. A. Abbot, Fryingpan-Arkansas Project, U.S. Bureau of Reclamation, 
Pueblo, Colorado, pergonal communication, 1975. 
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The TRWA and NTRWA variables ignore the amount of groundwater ap­

plied to the croplands because the estimation of these quantities 

introduces too much potential error. Taylor and Luckey [36] estimate 

groundwater consumption in the Lower Arkansas River Valley is about 

25% of the surface water use, and they also have estimated quantities 

used for each ditch using known well capacities and power consump­

tion data. Estimating pumped quantities from power data is subject to 

large potential errors [37] for several reasons including lack of 

information about total dynamic head and well and pump efficiencies. 

Furthermore, power data are incomplete and difficult to obtain. Taylor 

and Luckey's estimates are in 30-day time increments and also could 

not be subdivided into stretches and tributary/nontributary areas for 

this study. These considerations are the basis for the decision not to 

directly include groundwater use in the model at this time. Another 

variable that is discussed later does introduce some elements of ground­

water use, but the surface runoff inçact is not included. 

Another element that can also be evaluated in another study is 

the impact on the model of time lagging the diversion values, i.e. the 

surface runoff on day t may be more closely related to the water diverted 

on day t-1 and/or day t-2. 

Stream-aquifer water exchanges 

The Stream-Aquifer Water Exchange (SAWE) element of the model 

presented complex problems in developing variables. The basic approach 

to this element utilizes a qualitative mass balance analysis of the al­

luvial aquifer underlying the study segment. Inflow sources to the 
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aquifer are upstream alluvial aquifers and deep percolation from streams, 

lakes, reservoirs, canals, and the soil moisture bank. Inflow from con­

fined aquifers is assumed to be negligible because no shallow confined 

aquifers are known to exist near the study area. Major outflow sinks 

for the study segment aquifer include downstream alluvial aquifers, 

exfiltration to streams, direct plant use, and wells. The deep percola­

tion from streams and the exfiltration to streams are the two basic units 

of the stream-aquifer water exchange element needed for the water balance 

model and cannot occur simultaneously. These two basic units are 

modeled as dependent variables in terms of some of the other sources 

and sinks. 

The aquifer-aquifer exchanges and the deep percolation from lakes 

and reservoirs were assumed to be constant over the study period. This 

assumption is based on the knowledge that the John Martin and Dye 

Reservoirs which are on or near the main stem were empty during the 

study period, and the other major reservoirs are located far enough 

from the stream that impacts from declines in percolated water would 

not be felt in the surface system during the study period. The aquifer-

aquifer exchanges were assumed as constant because groundwater flow 

across large interfaces typically changes very slowly. Since the study 

period is very short, the assumption of constant exchange should not 

introduce any large potential error. 

The SAWE can be viewed as the sum of two parts, (1) a constant 

exchange and (2) a dynamic exchange. The constant element would be 

the result of constant inflow-outflow elements such as those described 

above. When the SAWE is added to the regression model, the constant 
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element will become a part of the regression constant. So no variables 

were constructed to simulate the groundwater inflows and outflows that 

are assumed to be constant. 

The deep percolation from the canals is a function of the amount 

of water in the canals. This quantity is estimated by the TRWA and 

NTRWA variables discussed above so no additional variable is constructed 

to account for this inflow to the aquifer. 

The effect of direct plant use of groundwater is simulated by 

estimating the Evapo-Transpiration (Ê ) of the PHreatophytes (ETPH) 

in the study segment. The phreatophyte évapotranspiration literature 

was reviewed prior to developing the estimation technique for this 

study. The term, évapotranspiration, refers to both the water 

evaporated from the soil and the water taken up and not returned by the 

plants for growth and respiration. 

Phreatophytes are a group of plants that send their roots down 

into the saturated groundwater table or into the capillairy fringe just 

above the groundwater surface [37]. Salt Cedar, Cottonwood, Willow 

and Salt Grass are common phreatophytes. Meinzer [38] identified the 

correlation between phreatophytes and accessible groundwater in 1927. 

Robinson [39] has identified most of the phreatophytes found in the 

U.S. and has provided detailed descriptions of the more common phreato­

phytes . 

Phreatophytes consume large quantities of water through évapo­

transpiration, and researchers in the semiarid western states have 

been investigating potential water conservation through phreatophyte 

elimination for over forty years. In 1952, Robinson [40) estimated the 
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water consumed by phreatophytes in the western states at 20-25 million 

acre-feet per year. The magnitude of the potential benefits from 

reducing this consumptive use has encouraged numerous research efforts 

into the realizable benefits and associated costs of phreatophyte 

reduction [41, 42, 43, 44, 45, 46]. Many of the early efforts have 

been summarized by a Select Committee on National Water Resources 

[47]. Several areas have been investigated to determine consumptive 

use levels in addition to those studies cited above [48, 49, 50, 51, 

52, 53, 54, 55, 56, 57, 58, 59, 60]. 

The phreatophyte areas along the Arkansas River channel between 

Pueblo Reservoir and John Martin Reservoir have been estimated (see 

Figure 8) in this study to be approximately 38000 acres and composed 

of light and medium density growth. Blaney and Griddle [51] estimated 

the annual water consumption in Colorado for these two densities at 28 

and 35 inches respectively which are less than most estimates for other 

areas. Therefore, the annual consumption in the Lower Arkansas Valley 

of the phreatophytes could be as high as 90000 to 110000 acre-feet. 

The independent variables affecting phreatophyte water consumption 

include solar radiation, species (type and size), climate variables, 

temperature, relative humidity and wind. These relationships are quite 

similar to those discussed below for agricultural crops, but several 

additional factors must be included in the phreatophyte case. 

The need for phreatophyte roots to reach the water table introduces 

the depth to water table measurement as an important variable. In 

general, the phreatophyte consumption is reported [49; and many others] 

to vary inversely with the depth to groundwater. When the groundwater 
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table is near the land surface, the capillary fringe may intercept the 

surface and create a more direct atmosphere-groundwater connection 

which will greatly increase the apparent évapotranspiration. 

Another variable affecting évapotranspiration by phreatophytes 

is the growth density. An artificial term, volume-density [42], has 

been used to estimate the combined areal density (units per unit area) 

and the vertical density (the vertical concentration of foliage). A 

volume density of 100% represents maximum concentration. The growth 

density can vary dramatically from very sparse to extremely dense, and 

this variability is difficult to measure. 

Phreatophyte water consumption is also affected by the underlying 

soils. Agricultural crops usually are planted in prepared ground that 

is relatively smooth and homogeneous. Phreatophytes, on the other 

hand, often grow in several different soil conditions within one 

contiguous area. This soil variability is suspected as the main cause 

for some inconsistent results in a recent research project [41]. 

The consumption characteristics also vary among the species of 

phreatophytes as is illustrated in Table 5 (from [47]). The values 

have been taken from numerous reported and unreported projects of several 

Federal and State agencies. All of the values except those for Alder 

and Mesquite were developed by growing the plants in tanks. The high 

consumption rates of Saltcedar and Cottonwood are two to eight times 

greater than the relatively low rates of Salt grass, Greasewood, and 

Mesquite. When natural phreatophyte stands contain two or more species 

the estimation of consumptive use becomes even more complex because 
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Table 5. Annual rate of water use by some common phreatophytes in 
Western United Stateŝ  

Annual 
rate in-
cluding 
precipi- Volume Depth to 

Plant tation density water Locality 

Acre-feet 
per acre Percent Feet 

Alder 5.3 — 6 Santa Ana River, Calif. 
Batamole or 
seepwillow 4.7 100 3-4 Safford Valley, Ariz. 

Cottonwood 7.6-5.2 100 6 San Luis Rey River, Calif. 
Do. 6.0 100 — Safford Valley, Ariz. 

Greasewood 2.5-0.08 — 10 Escalante Valley, Utah 
Mesquite 3.3 100 — Safford Valley, Ariz. 
Sacaton 4.0-3.5 — . — Pecos River Valley, N. Mex. 
Saltcedar 5.5-4.7 — 1-7 Do. 
Do. 9.2-7.3 100 1.5-5 Safford Valley, Ariz. 

Saltgrass 4.1-1.1 — 2-4 Owens Valley, Calif. 
Do. 2.9-1.1 — 0.3-2.1 Santa Ana, Calif. 
Do. 2.3-1.1 — 2.0 San Luis Valley, Colo. 
Do. 4.5 — 0.65 Carlsbad, N. Mex. 
Do. 2.6 — 0.4-3.1 Isleta, N. Mex. 
Do. 4.0-0.8 — 2.2 Los Griegos, N. Mex. 
Do. 1.9 — 1.9-2.6 Mesilla Dam, N. Mex. 
Do. 2.3-1.6 — 2.0 Escalante Valley, Utah 
Do. 2.0 — 2.0 Vernal, Utah 

Willow 4.4 — 1.1 Santa Ana, Calif. 
Do. 2.5 — Isleta, N. Mex. 

F̂rom Ref. [47]. 

heterogeneous phreatophyte growths have received limited research at­

tention. 

The amount of water available to the phreatophytes can affect the 

consumptive use, with abundant water increasing the rate of évapo­

transpiration [61]. The quality of the water supply also affects water 

use, with higher dissolved solids concentrations reducing the 
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évapotranspiration rate [39]. These two factors plus volume density-

differences where densities are unreported are the most probable 

explanations for the variations seen in Table 5 for the same species at 

different sites but similar climates. 

Several methods have been employed to field measure évapotranspira­

tion. Gatewood, et al. [42] describe six of these methods, (1) tank 

studies, (2) transpiration wells, (3) seepage runs, (4) inflow-outflow 

(i.e. the water budget approach), (5) chloride increase, and (6) the 

slope seepage method. Weeks and Sorey [41] employed a water budget 

method utilizing finite difference solution techniques, and a current 

project is using a water budget approach [62]. All of these methods are 

subject to severe measurement error, and in some of the methods some 

variables must be ignored, assumed, and/or left uncontrolled. Due to 

this high probability of error, Gatewood, et al. [42] were quite pleased 

when the six methods they employed each yielded results within 20% of 

the mean for the project. 

Blaney [43] first attempted to estimate phreatophyte évapotranspira­

tion using the Blaney-Criddle format in 1952. The Blaney-Griddle 

equation for estimating évapotranspiration is: 

™ t X p ( 
U = K S -ÏÔO (9) 

where U is évapotranspiration in inches of water for a complete growing 

season, K is a consumptive use coefficient, p is the percentage of 

annual daylight hours in each month of the growing season, t is the 

mean monthly temperature in °F, and m is the number of months in the 

growing period. The constant K is derived empirically and is a function 
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of most of the factors discussed above. The units for K are inches of 

water per °F per growing season. The Blaney-Griddle equation is also 

given as: 

u = ̂ k X t X p_ ' (10) 
100 

where t and p remain as defined above, u is évapotranspiration in 

inches per month, and k is a consumptive use coefficient similar to 

K but derived monthly instead of seasonally. 

The Blaney-Griddle equation is an attractive approach to 

estimation because of its dependence on readily available data for its 

two variables providing reliable estimates of K (or k) are available. 

The method has been used extensively for estimating the consumptive 

water use of crops because the K (or k) values for each type of crop 

appears to be transferrable from area to area. Blaney [61] has reported 

several attempts to estimate using phreatophyte consumptive use 

coefficients from similar areas, but the approach has met with limited 

acceptance. Rantz [49] refined the Blaney-Griddle coefficients to in­

clude the effect of the depth to the groundwater in addition to species 

and density effects, but the use of these refined coefficients can 

still introduce large potential errors. The broad diversity of 

phreatophyte mixtures of species, densities, and growth conditions 

makes the use of consumptive use coefficient estimates from other areas 

too risky. 

However, transferring coefficients into this study area is not 

necessary because the work of Weeks and Sorey [41] was performed in 

this same area. The data developed in their work can be used to 



www.manaraa.com

78 

estimate consumptive use coefficients in the study area. Weeks and 

Sorey attempted to measure the évapotranspiration at four sites near 

(1) Boone, (2) Las Animas, (3) Lamar, and (4) Holly, Colorado. The 

project covered the years 1966-1959, and the évapotranspiration was 

estimated with a water budget technique involving the solution of the 

groundwater flow equations using finite difference arrays. The project 

purpose was to evaluate the analytical technique. The results at 

Boone and Holly were not acceptable to the authors and the cause of 

the poor results were felt to be a high water table at Boone and the 

heterogeneous soil conditions at Holly, This research yielded total 

annual évapotranspiration values of 29 inches in 1966 and 26 inches in 

1968 at the Las Animas site, and values of 23 inches in 1966, 21 inches 

in 1968, and 30 inches in 1969 at the Lamar site. Considering the high 

potential error these results appear to agree with the Blaney-Criddle 

estimates presented earlier in this discussion, but the most significant 

aspect of these results is that the estimates are considerably below 

the estimates for other western areas. While the exact cause of this 

phenomena cannot be identified, the extremely poor quality of the 

groundwater in the Arkansas Valley area and the very acute shortage 

of water during the dry season are probably major reasons for these 

lower consumptive use rates. As a final comparison, the K rates given 

by Rantz [49] were used to estimate annual évapotranspiration using a 

5-foot depth to groundwater dimension (this value is about the mean of 

the Weeks and Sorey [41] observations). This yielded an estimate of 

53 inches per year if the vegetation is Cottonwood and willow and 60 

inches if the vegetation is saltcedar. The Arkansas Valley phreatophytes 
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are actually a mixture of these three common plants. This comparison 

supports the advisability of developing K rates from the Weeks and Sorey 

work. 

As a result of the above considerations, phreatophyte évapo­

transpiration was simulated for the study area in the variable ETPH 

by developing a unit estimate of for each observation and multiplying 

by the acres of phreatophytes found in each stretch. The unit estimate 

was in terms of inches Ê  per inch of seasonal Ê , and the parameter 

estimate developed in the regression procedure will account for the 

number of inches of Ê  actually occurring during the study period. 

Evapotranspiration estimates are usually prepared for annual, 

seasonal, or monthly time intervals, and time intervals of less than 

one month are considered too short to give the estimate acceptable 

accuracy. This causes a problem with the model because the selected 

model interval is one day. This problem was circumvented by computing 

daily unit estimates of the monthly unit Ê  estimate and entering 

l/31th of that estimate as the daily observation. The equation is: 

where u' is 1/31 of the monthly unit Ê  estimate in inches per inch of 

per inch of seasonal Ê -°F-% sunlight, and f is the consumptive use 

factor. The variable f is defined as: 

u' = kp X f X (11) 

seasonal Ê , kp is a monthly unit consumptive use coefficient in inches 

(12) 
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where f is in °F-% sunlight, t is the average daily temperature for 

each stretch in °F, and p is % of annual sunlight per month. This 

latter variable was constructed as a daily estimate of a monthly value 

using a daily estimate of sunlight hours for the study segment's 

latitude and then converting to % annual per month with the factors 

depending on the number of days in the month. Average 

daily temperatures were not available for the weather stations in the 

study area so t was calculated as the average of the daily high and low 

values. The temperature data for each stretch were taken from the 

following station records [63]. 

Stretch 1 — Pueblo WSO AP — Index 6740 

Stretch 2 — Pueblo WSO AP — Index 6740 and 

Rocky Ford 2 SE — Index 7167 

Stretch 3 — Rocky Ford 2 SE — Index 7167 

Stretch 4 — La Junta FAA AP — Index 4720 

Stretch 5 — Las Animas — Index 4834 

Two stations were averaged for stretch 2 because the stretch is midway 

between the stations. The other stretches either contain or are near 

the stations used. 

The daily estimate unit monthly consumptive use coefficient k̂  

was calculated with the equation: 

\ 

where is a daily estimate of unit monthly évapotranspiration in 

inches per inch annual and f̂  is a daily estimate of a monthly 

consumptive use factor. The estimation of û  utilized the monthly 
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évapotranspiration data reported by Weeks and Sorey [41]. This data 

bank was gathered over the four-year period, 1966-1969, at two sites 

in the lower Arkansas River valley. The site near Las Animas is located 

between stretches 4 and 5 in the study segment and the other site near 

Lamar is about 20 miles downstream from the study segment. Data from 

both sites are plotted in Figure 11, and a smooth curve has been 

visually fitted to the data. Monthly values of were read from the 

curve and are shown along the bottom of Figure 11. The monthly values 

are also represented as percentages of the sum of the monthly values 

below each month's estimate in Figure 11. These monthly percentages 

were then plotted in bar graph form in Figure 12, and a smooth curve 

was visually fitted so that the areas under both curves are approxi­

mately equal. Daily estimates of û  were then read from the ordinate 

in Figure 12. 

The estimation of f̂  used a similar curve fitting technique. 

Normal monthly temperatures [63] and monthly values of p were used to 

calculate monthly consimptive use factors for five stations in and above 

the study segment. Seasonal consumptive use factors were calculated 

by summing the monthly values, and each seasonal value was compared 

with the average for the five stations. The results of these calcula­

tions and the values for T and p are shown in Table 6. Since the devia­

tion from the mean among the five stations is quite small (1.34% 

maximum) a single consumptive use factor for the whole study segment 

was developed instead of developing factors for each stretch. The 

monthly factors were averaged for the five stations and the percentage 

of the seasonal factor was calculated for each month. These values 
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Table 6. Monthly consumptive use factors, for normal temperatures [63] 

Jan. Feb. Mar. April May June July Aug. Sept. Oct. 

Canon City 
N̂ 

- - 42.0 51.8 60.8 69.5 75.5 73.9 66.2 56.4 

Index No. 1294 
TP 
100 

- - 3.50 4.61 6.03 6.92 7.63 7.00 5.55 4.40 

Pueblo 
\ 
TP 
100 

40.0 51.7 61.1 70.4 76.4 74.5 66.2 54.5 
WSO 
Index No. 6740 

\ 
TP 
100 

— - 3.34 4,60 6.06 7.00 7.72 7.06 5.55 4.25 

Rocky Ford 
N̂ 

- - 41.0 52.9 62.1 71,5 76.5 74.6 66,3 58.4 

Index No, 7167 TP 
100 

- - 3.42 4.71 6.16 7.11 7.73 7.06 5.56 4.56 

Las Animas - - 41.2 53.9 63.4 72.9 78.1 76.1 67.6 55.5 

Index No. 4834 
TP 
100 

- - 3.44 4.80 6.29 7.25 7.89 7.21 5.66 4.33 

John Martin 
N̂ 
TP 
100 

— 41.3 53.4 63.1 72.8 78.3 76.3 67.8 55.8 
Dam 

Index No, 4388 

N̂ 
TP 
100 

— — 3.44 4 .75  6.26 7,24 7,91 7.23 5,68 4,35 

P — — 8.34 8.90 9.92 9.95 10.10 9.47 8.38 7.80 

A TP Avg. ̂  — — 3.43 4.69 6.16 7.11 7.77 7.11 5.60 4.38 

7 E 
 ̂100 — — 7.42 10.14 13.32 15.37 16.80 15.37 12.11 9.47 
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Table 6. Continued 

Nov. Dec. V TP 
 ̂ÏÔÔ 

% of avg. 

Canon City — — — 

Index No. 1294 
txp 
100 

— — 45.63 98.66 

Pueblo 

TP 
100 

WSO 
Index No, 6740 

TP 
100 

— — 45.57 98.53 

Rocky Ford 
N̂ 

— — — 

Index No. 7167 TP 
100 

— — 46.30 100.11 

Las Animas 
N̂ 

— — — 

Index No. 4834 TP 
100 

— — 46.86 101.32 

John Martin 
N̂ 
TP 
100 

Dam 
Index No, 4388 

N̂ 
TP 
100 

— — 46.87 101.34 

P — — - — 

TP Avg. — — 46.25 100 

7o E ̂  - — 100 
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are also shown in Table 6. The monthly average factors were then 

plotted in bar graph form in Figure 13. A smoothed curve was visually-

fitted to the bar curve so that the areas under each curve are approxi­

mately equal, and daily estimates of f̂  were read from the ordinate 

in Figure 13. 

Numerous estimates were read from the smooth curves in Figures 12 

and 13 and estimates were calculated with equation 10. The resulting 

smooth curve is shown in Figure 14. Values of were then read from 

the ordinate in Figure 14 and used for estimation of ETPH observations 

using equation 11. The sign of the ETPH observations is always posi­

tive , and since ETPH represents an outflow from the surface system, 

the sign of the parameter should also be positive. 

The inflow to the aquifer from soil moisture bank deep percola­

tion and the outflow through the wells were modeled conjunctively. 

The combining of these two variables is based on their inherent inter­

relationship because of the structure of the surface water, cropping, 

and groundwater use regime. Whenever the consumptive water needs of 

the crops exceeds the quantity of surface water available, the soil 

moisture bank declines. This negative soil moisture stress reduces 

the deep percolation to the aquifer, and the farmer will normally in­

crease his groundwater use. As a result, negative soil moisture stress 

produces an outflow increase from the groundwater aquifer. Conversely, 

when the surface water supply exceeds the consumptive needs of the 

crops, the use of groundwater declines and the moisture content of the 

soil bank will increase resulting in more deep percolation. This 

positive soil moisture stress results in a decrease in outflow and an 
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-FOR T MONTHLY /W£RAG£ NOPMAL T£MP. 

MATT. APR. MAY JUNE JULY 
GROWfNG SEASON 

AUS. SEPT. OCT. 

Figure 13. Estimation curve for monthly normal consumptive use factor (f) 



www.manaraa.com

88 

03 

.02 

W./YP. Y^SM 

OCT. AUG. 

STUDY PER/OD 

Figure 14. Estimation curve for 



www.manaraa.com

89 

inflow to the aquifer, A soil moisture stress concept was used to 

conjunctively model the deep percolation inflow and well use outflow 

variables. 

Two activities are the principal elements in the soil stress 

variable: (1) the amount of surface water applied to the crops, and 

(2) the consumptive use demands of the crops. The first element has 

been modeled above in the variables TRWA and NTRWA, and the modeling of 

the latter element is described below. 

Consumptive use and évapotranspiration are usually considered 

synonymous [64], and include water used by plants for tissue and 

transpiration and the evaporation of soil moisture and intercepted or 

standing water. Interest in estimation of crop water needs has existed 

since near the beginning of agriculture, and reported U.S. research on 

this subject began appearing in the late 1800's when irrigated agricul­

ture began to develop in the western part of the country. Research 

interest has continued to grow for about a hundred years, and today 

consumptive use is still a very popular research topic. As a result of 

this broad and growing research interest, the literature is now quite 

large and contains numerous models for estimating consumptive use. 

However, the literature does not contain a conclusive basis for choosing 

the consumptive use model to be used in this study. 

The factors affecting consumptive use are numerous and include 

(1) climatic variables, (2) crop variables, and (3) geologic and hydro-

logic variables. Munson [65] lists 38 variables (or groups of variables) 

that form the bulk of these three variable groups. This large group of 

causative factors is a primary reason for the large number of consumptive 
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use models. Several different treatments of these variables are 

illustrated in the comparison of consumptive use models in Table 7. 

The seventeen models chosen for this comparison include those models 

most commonly researched and applied but do not represent a complete 

list of all consumptive use models. 

The comparison in Table 7 shows that consumptive use models do 

not all predict the same quantity. Two models predict lake evapora­

tion which is sometimes also accepted as an estimate of évapotranspira­

tion. Some models predict specially defined quantities, e.g. Model ID 

#16. The majority of the models predict potential évapotranspiration 

(Ê p) which is the amount of water that will be consumptively used 

during a unit time interval when an adequate water supply is available. 

Some of the potential évapotranspiration estimates are specific to a 

reference crop e.g. alfalfa or grass, while other estimates 

represent an average for several crops. The potential évapotranspira­

tion estimates can be converted to other specific crop estimates 

using the equation 

Stpc = Kc.=tp 

where is a crop coefficient (see [64], pp. 87-89). The crop coeffi­

cient typically increases from the season's start until the crop 

foliage is well developed and then remains constant until the crop 

matures. The Ê  ̂estimates [64] can be converted to évapotranspiration 

(Et) estimates for conditions where a scarce water supply limits 

consumptive use by reducing with the equation. 
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Table 7. Comparison of consumptive use models 

Model 
ID # Model author and references 

Predicted 
quantitŷ  

Time 
interval 

Independent variables 
AC Atmospheric 

pressure 
Specific 
heat 

1 Penman [66] 
2 Kohler, Nordenson, & Fox [67] 
3 vanBavel, Businger [68, 69] 
4 Makink [70] 
5 Christiansen [71] 
6a Jensen-Haise [ 7 2 ]  

6b Jensen [73] 
6c Jensen, Robb, & Franzoy [74] 
7 Stephens [75] 
8 Lane [76] 
9 Christianson & Hargreaves [77, 78] 
10 Papadakis [79] 
11 Hamon [80] 
12 Blaney-Criddle [81, 82, 83, 84] 
13 Thornthwaite [85] 
14 Lowry-Johnson [86] 
15 Munson [65] 
16 Olivier [87] 
17 Behnke-Maxey [88] 

Btpr 
LE 

Etp 
Btpr 
Btp 

Efcpr 

Etpr 
LE 

Etp 
REt 
Etp 
t̂pc 
Etp 
Etp 
Etp 
BWR 

Etp 

D 
D 

H, D 
10 days 

M 

5 days 

10 days 
M 
M 
M 
D 

A, M 
M 
A 
M 
M 
M 

X 
X 
X 
X 

X X 
X 
X X 
X X 

L̂E = lake evaporation, E(.p = potential évapotranspiration, = potential évapotranspiration for 
for crop c, E = evaporation, Ej.p̂  = potential évapotranspiration for a specific reference crop Y, 
BWR = basic water requirements. 

= hourly, D = daily, M = monthly, A = annual (or seasonal). Time periods shown are the most 
commonly recommended intervals, 

= slope of the saturation vapor pressure-temperature curve. 
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ID i 

1 
2 
3 
4 
5 
6a 
6b 

6c 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

7. Continued 

Independent variables 
Predicted Time Latent heat- Net Solar Wind Vapor Temperature 
quantitŷ  interval̂  vaporization radiation radiation velocity pressure 

Etpr 
LE 
Etp 

Btpr 
Etp 

Etpr 

t̂pr 
LE 
Etp 
REt 
Etp 

Etpc 
Etp 

Etp 
Etp 
BWR 
Etp 

D X X X X X 
D X X X 

H, D X X X X X 
10 days X X 

M X X X 

5 days X X X 

10 days X X 
M X X 
M X X 
M X 
D 

A, M 
M 
A 
M 
M 
M 

X 
X 
X 
X 
X 
X 
X 

VO 
w 
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Table 7. Continued 

Independent variables 

Model Predicted Time Humidity Evaporation Sunlight Elevation Water require- Air PE Heat 
ID # quantity® interval̂  ment constant̂  density index® index̂  

1 
2 
3 
4 
5 
6a 
6b 
6c 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Btpr 
LE 

ITP 
Ctpr 
Etp 

Btpr 

t̂pr 
LE 
Etp 
REt 
Etp 
Etpc 
t̂p 
t̂p 
Etp 
BWR 
Etp 

D 
D 

H, D 
10 days 

M 

5 days 

10 days 
M 
M 
M 
D 

A, M 
M 
A 
M 
M 
M 

X 

X 

X 
X 

X 

X 
X 
X 

X 

X 

X 
X X 

X 

dw ater requirement constant includes the effects of latitude and temperature on radiation. 

'PE index = a statistical index derived from precipitation and evaporation data. 

Heat index = an index based on temperature that was developed for U.S. East Coast conditions. 
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K - K,. 4̂  . 
where AW is the percentage of the potential soil moisture bank that is 

available to the crops. However, the Blaney-Criddle model predicts 

potential évapotranspiration for a number of individual crops using 

crop coefficients that have been developed solely for this model, and 

therefore does not use the crop coefficients, discussed above. 

Consumptive use estimates have been developed for a broad variety 

of applications, and this variety has caused the wide range of time 

intervals used in the estimation models. For example, the shorter 

interval models, i.e. hourly, daily or 5 and 10 days, are used for 

operating irrigation systems, and the longer interval models are used 

for sizing water resource projects, negotiation of compacts and treaties, 

and water rights litigation and adjudication. A daily interval model 

is preferred for this study, but these shorter interval models require 

a larger amount of input data. Typically, the application of the 

more complex shorter interval models has been severely restricted 

because of these data limitations. 

The climatic data [63] available for one or more stations in 

the study area include: 

1. Precipitation — daily, monthly, annual, normal 

2. Temperature, air — daily, monthly, annual, normal 

3. Evaporation — daily, monthly 

4. Wind — daily, monthly 

5. Degree days — monthly, seasonal, normal 

6. Relative humidity — 4 days per month. 
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An effort was made to locate either net or solar radiation data for 

the study area, but no radiation data could be found. Helton [31] 

also encountered this data gap, and he overcame the problem by cor­

relating the data in the area with data from a station near Akron, 

Colorado, which is approximately 150 air miles north of the area. 

Even though Helton achieved a high correlation, the method introduces 

another source of high potential error, and the magnitude of this 

potential error is difficult to assess. A choice between synthesizing 

data as Helton did or using a different model should be based on the 

criteria of minimizing the potential error, but this evaluation was 

not possible in this situation. Therefore, the models using a radia­

tion variable were arbitrarily not considered further for use in this 

study. This data gap eliminates eight of the models listed in Table 7 

including five (ID's 1, 2, 3, 5, and 6) models that have received 

considerable research attention. 

Cf the remaining nine models, four (ID's 13, 15, 16 and 17) were 

eliminated because they use special variables, e.g. a water requirement 

constant, that were developed for areas quite dissimilar to the study 

area. The Lowry-Johnson model (ID 14) was eliminated because the 

available data can support one of the more complex models. The Hamon 

(ID 11) and Papadakis (ID 10) models have received very limited research 

and application compared to the Blaney-Criddle (ID 12) and Christiansen 

and Hargreaves (ID 9) models, so these latter two models were given 

the most comprehensive consideration for this study. Cruff and 

Thompson [89] have compared six of the models (ID's 2, 8, 11, 12, 13, 
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and 14) in Table 7, and their results are stmmarized in Table 8. The 

Blaney-Criddle model appears to yield more accurate results than all 

but the Kohler, et al. model (ID 2) which supports the choice of the 

Blaney-Criddle model over the Hamon model. The AS CE study group [ 64] 

has compared a large number of models including the two models most 

seriously considered for this study, and the results indicate that 

the Christiansen and Hargreaves model is more accurate. However, the 

AS CE report also points out that this model may be difficult to 

calibrate. The Christiansen and Hargreaves model also requires 

humidity data which is only partially available for the study area. 

The Blaney-Criddle model has been applied more times than any 

other model shown in Table 7 [43, 46, 48, 49, 51, 52, 53, 54, 55, 56, 

57, 58, 61, 64, 81, 82, 86, 90, 91], and many of these applications 

have been in the Western United States. The Soil Conservation Service 

of the U.S. Department of Agriculture has adopted the Blaney-Criddle 

model for consumptive use estimations, and has refined and developed 

the model extensively. The current SCS techniques are well documented 

in the SCS Technical Release No. 21 [81] which includes crop coeffi­

cient estimation curves for 25 crops, and this wealth of documentation 

was a primary factor in the selection of the SCS version of the Blaney-

Criddle model for the consumptive use estimates in this study. Other 

factors that contributed to this selection were the limited amount of 

himidity data, potential problems in estimating Ê  ̂for specific crops 

using the Christiansen and Hargreaves model, and the difference in 

CŒnputational effort required. The sacrifice in estimation accuracy 

was considered acceptable because the regression procedure can compensate 
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Table 8. Comparison of Ej. estimation accuracy for selected modelŝ  

Blaney- Kohler, Thomth- Lowry-
Criddle et al. waite Johnson Hamon Lane 
# 7o # % # % # 7o # 7o # % 

Method Sta Err Sta Err Sta Err Sta Err Sta Err Sta Err 

Calendar year 

Arid climate 9 -31 1 -1 9 -54 7 -48 9 -49 7 -8 

Modified arid climate 4 +5 3 +14 4 -29 4 -21 4 -17 4 +41 

Subhumid climate 10 -4 3 -1 10 -33 10 -22 10 -35 9 +22 

Total sta/aug % E 23 -13 7 +5 23 -41 21 -30 23 -38 20 +16 

rowing season 

Arid climate 10 -26 1 -1 10 -46 8 -46 10 -44 8 -5 

Modified arid climate 4 +11 3 +11 4 -18 4 -22 4 -11 4 +41 

Subhumid climate 11 -1 3 -3 11 -31 11 -19 11 -34 10 +23 

Total sta/aug % E 25 -9 7 +3 25 -35 25 -29 25 -35 22 +16 

F̂rom Gruff and Thompson [89]. 
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for a consistent error in the estimate when the regression parameters 

are estimated. 

The ses modified Blaney-Criddle model used in this study is: 

u = kf (16) 

where u is monthly consumptive use of a specific crop in inches, and 

k is an empirical consumptive use crop coefficient. The monthly con­

sumptive use factor is defined by equation 12 above. The variables 

u and f are similar for the consumptive use estimates for both crops 

and phreatophytes (see above discussion of the construction of ETPH). 

The temperature data and the consumptive use factor f were developed 

for the crop consumptive use estimate by the same method used in esti­

mating phreatophyte évapotranspiration for the variable ETPH as dis­

cussed above. 

However, the factor k is defined differently for the crop 

phreatophyte estimates. In the crop consumptive use estimates, the 

crop coefficient is defined as: 

k = k̂ k̂ , (17) 

vrtiere k̂  is mean monthly air temperature in op. The growth stage 

crop coefficient, k̂ , was read from SCS curves [82], and each k̂  

is for a specific crop. The curves plot k̂  versus calendar date for 

the rest of the crops. Growing seasons were assumed for several crops 

in the study area, and the assumed seasons are shown in Table 9. The 

assumptions are based on several oral contacts with residents in the 

study area and data provided by the Statistical Reporting Service of 
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Table 9. Assumed crop growing seasons 

Beginning End 
Crop date date 

Field com (grain) May 11 Oct. 8 

Dry beans June 16 Oct. 1 

Sugar beets May 15 Nov. 5 

Field com (silage) May 11 Oct. 8 

Spring grain April 23 Aug. 1 

Grain sorghum June 10 Dec. 1 

Small vegetables May 1 Sept. 1 

Winter wheat — July 20 

the U.S. Department of Agriculture . The curves provided daily esti­

mates of monthly values, and the coefficients were not modified to 

reflect any impact from an insufficient water supply. 

Two consumptive use variables were constructed for each stretch; 

(1) CONl was constructed for tributary areas and (2) C0N2 was con­

structed for nontributary areas with the distinction between tributary 

and nontributary being identical with the method used in constructing 

TRWA and NTRWA as discussed above. Each consumptive use variable is 

the summation of the individual crop consumptive use estimates within 

its appropriate land area. The variables were constructed in units of 

cfs to be compatible with the TKWA and NTRWA variables. 

Ŝtatistical Reporting Service Office, U.S. Department of Agricul­
ture, Denver, Colorado, personal communication, 1975. 
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The use of individual crop coefficients, k̂ , required the disag­

gregation of tributary and nontributary areas into crop acreages for 

each area. This disaggregation was accomplished in several steps which 

began with the estimation of the percent of irrigated acres in each 

county containing the study area allocated to each crop. These per­

centages were estimated from data found in Colorado Agricultural 

Statistics [84] for the years 1966-1970 and 1972. The percentage of 

total irrigated acres in each county allocated to each crop was 

calculated for each of the six years of data. The percentages were 

then averaged for each county and are presented in Table 10. These 

average percentages were used to estimate the percentage of acres 

in each irrigation system allocated to each crop. Since the Colorado 

Canal is the only large irrigation system in Crowley County, the per­

centages for that county were assigned directly to that system. In 

the other three counties the percentages estimated for each system 

were modified according to the general strength of each system's water 

rights. The systems with higher priority rights, e.g. the Rocky 

Ford Canal, were assigned larger proportions of the higher consumptive 

use crops, e.g. com. Irrigation systems were given the same per­

centages in all counties. The results of this estimation procedure 

for the systems in the study area are presented in Table 11. Barley, 

oats, and spring wheat were combined in the spring grains category, 

and potatoes was included in the vegetable category. Some estimates 

were influenced by additional available information. For example, the 

Rocky Ford, Catlin, and Oxford Farmers systems are known to produce 

a large proportion of vegetables so most of the Otero County vegetable 
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Table 10. Percentage of total irrigated acres by crop 

County 
Crop Pueblo Crowley Otero Bent 

Spring wheat 0 0 0.1 0 

Winter wheat 3.2 1.4 2.6 8.1 

Corn-grain 17.5 9.6 20.0 6.1 

Corn-silage 7.3 8.2 12.2 3.5 

Barley 1.8 0.3 1.9 1.0 

Sorghum-grain 4.8 20.0 7.9 32.3 

Dry beans 8.5 2.4 1.1 0 

Sugar beets 0.5 0.3 1.5 0 

Oats 0.7 0.3 1.2 0.7 

Hay 51.5 57.5 46.3 47.1 

Potatoes 0 0 0.6 0 

Vegetables 4.2 0 4.6 1.2 

Total 100.0 100.0 100.0 100.0 

production was assigned to these three systems. The Rocky Ford Hiline 

and Oxford Farmers systems were also influenced by special reports [26, 

92] on those systems. Some crops, e.g. melons, do not appear in the 

analysis because the percentages for those crops rounded off to zero. 

The crop acreage estimates for tributary and nontributary areas 

in each stretch were then calculated by multiplying the percentage 

of a particular crop in a particular system by the total number of 
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Table 11. Percentages of total system irrigated acres by crop 

Irrigation systems 

Crop 
Bessemer 
Ditch 

Excelsior 
Ditch 

Collier 
Canal 

Colorado 
Canal 

R. F. Hiline 
Canal 

Oxford Far. 
Ditch 

Otero 
Canal 

Spring grain 2.5 2.5 2.5 0.6 1.5 0.4 8.0 

Winter wheat 3.2 3.2 3.2 1.4 1.3 0.5 6.6 

Corn-grain 17.5 17.5 17.5 9.6 18.9 22.3 19.0 

Corn-silage 7.3 7.3 7.3 8.2 13.8 12.0 10.5 

Sorghum-grain 4.8  4.8 4.8 20.0 5.4 0.8 10.8 

Dry beans 8.5 8.5 8.5 2.4 2.0 1.4 2.4 

Sugar beets 0.5 0.5 0.5 0.3 1.0 1.7 1.5 

Hay 51.5 51.5 51.5 57.5 52.2 51.1 41.2 

Vegetables 4.2 4.2 4.2 0 3.9 9.8 0 

Totals 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 11. Continued 

Irrigation systems 
Catlin Holbrook Rocky Ft. Lyon Las Animas Highland A. J. 
Canal Lake Ford Canal Consolidated Canal Anderson 

Crop Canal Canal 

Spring grain 0 8.0 0 2.8 1.0 1.7 3.2 

Winter wheat 0 6.5 0 7.8 8.1 8.1 2.6 

Corn-grain 20.2 19.0 23.3 8.4 6.1 6.1 20.0 

Corn-silage 11.2 10.5 12.9 4.7 3.5 3.5 12.2 

Sorghum-grain 11.6 10.8 0 28.5 32.3 32.3 7.9 

Dry beans 0 2.4 0 0.4 0 0 1.1 

Sugar beets 1.6 1.5 1.9 0.3 0 0 1.5 

Hay 44.5 41.2 51.0 66.1 47.1 47.1 46.3 

Vegetables 10.9 0 10.9 1.0 1.2 1.2 5.2 

Totals 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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acres irrigated by that system in that area. The consumptive use 

variables were then calculated with the equation; 

Consumptive Use (CONl or C0N2) = 

K L 
Z 2 Aĉ  ̂X (kg)̂ . X (k̂ )̂  X (f). X 0.042, (18) 

where Aĉ  ̂is the acres of crop 1 served by system c, (kc)̂  ̂is the 

estimate for crop 1 on observation i, and (k̂ )̂  ̂and (f)̂  are the values 

of k̂  and f for observation i. The individual estimates are summed 

for K systems and L crops. The constant 0.042 converts acre-inches per 

day to cfs. 

The variables TRWA, NTRWA, CONl, and C0N2 were then used to 

construct the variables. Tributary area SOil STress, TSOST, and Non-

Tributary area SOil STress, NTSOST were not used independently in the 

water balance model. 

The equations : 

TSOST = CONl - TRWA, and 

NTSOST = C0N2 - NTRWA (19) 

were used initially. Whenever TSOST and NTSOST are positive, the 

variables are simulating a condition where the SAWE element is ex­

changing water from the stream to the aquifer which would be a posi­

tive quantity in the water balance model. Therefore, the expected 

sign of the water balance model parameter is positive when the dominant 

element in TSOST and NTSOST in the groundwater withdrawal effect. When 

the parameter sign is negative the dominant effect will be the 
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surface runoff from the applied irrigation water and/or groundwater 

exfiltration. 

Inspection of the consumptive use and surface water applied 

variables revealed that the latter never exceeded the former so that 

TSOST and NTSOST were always positive. While this constant relation­

ship may actually exist in the study area, it also may result from 

overestimation of the consumptive use variables. Assuming that the 

soil stress variable should be both positive and negative, two addi­

tional sets of soil stress variables were prepared. One set was 

calculated with the equations: 

TSOST = ̂  ̂ . and 
CONl TRWA 

«TSOST = £2̂  . , (20) 
C0N2 NTEWA 

where CONl, C0N2, TRWA, and NTRWA are the mean values of each respective 

variable. The second set was calculated with the equations; 

• -

where SD(C0N1, C0N2, TRWA, or NTRWA) is the standard deviation for 

the respective variables. 

The relative contributions of these three sets of soil stress 

variables were evaluated during the study. 
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The As variable 

The As element of the water balance model was first modeled by 

estimating the daily change in cross-sectional area along the stream 

axis in each stretch [93]. The change in the vertical dimension was 

calculated with the stage-discharge relationship for the two boundary 

gages. This approach was abandoned for several reasons. First, the 

calculation of stage at the upstream station requires knowledge of the 

QIN value which means that an independent variable in the model 

contains an element of the dependent variable, and this method of 

constructing As does not permit the elimination of this unacceptable 

condition. This first approach was also abandoned because the 

submodel was unstable at very low flows. Furthermore, this approach 

assumed a constant stream surface area which is a difficult assumption 

to accept over the range of flows found in the observations. 

The second approach to the As variable resembles a "black box" 

technique and was suggested by Sauer's [93] unit-response method of 

flow routing. The approach assumes that the regression procedure will 

estimate a relationship between As and an impulse(s) that triggers the 

As function, i.e. the "black box", if the impulse(s) are included in 

the model as independent variables. The change in flow between consecu­

tive observations is selected as the impulse variable on the assumption 

that an increase in an inflow or a decrease in an outflow will increase 

the storage activity and conversely the opposite changes in flow 

magnitude will decrease the storage activity. 

The approach used in the water balance model assumes a linear re­

lationship between As and AQ/At and is written as: 
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Aŝ  = (Pp(AQ/At)̂  + (P2)(AQ/At)̂ _i 

+ (P2)(AQ/At)̂ _2 .... + (Pa)(AQ/6t)̂ _a+i (22) 

where AQ/At is the change in an inflow or outflow in a one day period, 

m denotes the period immediately preceding the observation, and m-1 is 

the period immediately preceding the previous day's observation, with 

a total of n AQ/At quantities affecting As for observation t. The 

quantities P̂ , P̂ , P̂  represent the parameters that define 

the linear relationship, and these quantities must be estimated. The 

signs of the AQIN and AQDIS variable parameters should be positive, and 

the signs of the AQOUT and AQDIV variable parameters should be nega­

tive. 

The AQ/At quantities were estimated with the equation: 

where n = 0, 1, 2 .... N. Various values of n were evaluated in the 

study to select an optimum value of N, and these results are discussed 

in the next chapter. For discussion purposes, a value of 2 has been 

assumed for N. 

Substituting water balance variables into equation 23, the As 

variable becomes: 

(23) 

+ (P̂ g)(QOUT̂  - QOUT̂ _̂ ) + (P̂ g)(QOUT̂ _̂  - Q0UT̂ _2) 

+ (Pgg)(QDIV^ - QDIV^_^) + (Pgg)(QDIV^_, - QDIV^g) 
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+ (P,g)(QDIŜ  - QDISj._̂ ) + (Pgg)(QDIŜ _i - QDIŜ  g), 

(24) 

where the subscript s denotes the stretch. The number of variables 

could be five times as large as shown if no stretches are combined. 

Rearranging equation 24 produces : 

M = (Pĵ XQIN̂ ) + (f23 - Pî XQIN̂ .i) + 

+ (P̂ g)(QOUÎ ) + - P̂ X̂QOUT̂  ĵ ) + (-P̂ g) (QODT̂  g) 

+ (PjPCQDW^) + (fas - Pj^XQOiv^.i) + (-Pj,^) (QDIV^.^) 

+ (P73)(QI>IŜ ) + (Pg, - Pĵ XQDIŜ .j) + (-P83>(QDIŜ .2) 

(25) 

Based on equation 25, the As variable in the water balance model was 

simulated by time lagging the variables QIN, QOUT, QDIV, and QDIS. 

The construction of these variables has been discussed above. Equation 

25 also shows that the parameters estimated in the regression procedure 

are combinations of the model parameters, e.g. 

- ̂ 23 - '•is (ZG) 

for the model parameter of QIN̂  where is the estimated regres­

sion coefficient for the xth regression variable in stretch s. 

The relationship As = f(AQ/At) may not be linear as assumed, and 

this possibility was considered before the decision was made to accept 

the linear assumption for this study. A model that is nonlinear in 

the variables but linear in the parameters, e.g. 

I a 
As = Z P̂ (AQ/At)̂  (27) 
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where a represents a vector of exponents of I length, adds considerable 

effort and complexity to the computation and analysis. For example, 

the terms .... + 2̂ŝ ^̂ t̂-l ~ * become 

.... + (P̂ g)(QINj,) + (Pgg - Pis)(QIKt_i) + CP2s)(QI\_2) after rear-

2 2 
rangement, but the terms ... + 2̂ŝ ''̂ t̂-l ~ ^̂ t̂-2̂  

+ .... become .... + (P̂ X̂QIN̂ )̂  - (2?̂ )̂ (QIN̂ ) (QIN̂ _̂ ) + (P̂  ̂

+ Pgs)- (2P2g)(QIN^_i) (QIN^.g) + (P2s)(QIN^_2)^ + •••• ON 

rearrangement. Two additional variables, the cross-product terms, 

have been added for each pair of As model variables, and this single 

change could add 40 variables to the water balance model. An addi­

tional problem is created in the analysis of the dependent variable. 

In the example above, QIN̂  is the dependent variable in the water balance 

model so terms containing QIN̂  must be moved to the left-hand term in 

2 
the model. As a result, the dependent variable becomes QIN̂  - P̂ g(QIN̂ ) 

+ (2P̂ g)(QIN̂ ) (QIN̂  which causes considerable additional complexity 

in the analysis of the regression results. These two considerations are 

the basis for accepting the linear assumptions for this study. Other 

versions of the As model can be investigated later if the water balance 

model appears to warrant further research and additional funds can be 

secured. 

Two additional variations in constructing As were investigated in 

this study. Both variations were designed to remove model error caused 

by unequal stretch lengths and the uneven distribution of discharges 

and diversions along the length of each stretch. The unequal stretch 

lengths caused the impact of a change in QIN, QDIV, or QDIS to show in 

QOUT at differing time intervals so that in the shorter stretches the 
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effect appeared in the same observation and in the longer stretches 

it often was not felt until the next day. As a result, the effect of 

the different stretch lengths will be absorbed by the As variables. 

A variable, QOUT̂ ^̂ , was constructed with the QOUT values from the 

observation following observation t and was added to the water balance 

model. Similar variables for QDIV were also evaluated. This addition 

of the t+1 variables adds a AQ/At term for period m+1, i.e. the period 

between today and tomorrow, and does not create a parameter estima­

tion problem since the term can be calculated from the data. However, 

the term does cause a problem when the model is used for prediction 

purposes if the future flow cannot be predicted. In the low flow 

conditions, the flow can be assumed to be constant over a multiday 

period, and the diversion and discharge patterns are also unlikely 

to change on a daily basis. In other words, the addition of special 

As variables, e.g. the t+1 variables, to improve the accuracy of 

parameter estimation is reasonable when the model is to be used for 

low flow predictions because As is assumed to be zero in low flow 

conditions which eliminates the estimation problem associated with 

the special variables. 

The uneven distribution of diversions and discharges along each 

stretch also causes inconsistent responses in the data. Two sets of 

variables were evaluated as methods of alleviating this problem. 

The variables were constructed by regrouping the individual values of 

QDIV and QDIS on the basis of time of impact at the downstream stretch 

boundary. For example, assuming the water velocity in the stream is 

ten miles per day, the diversion or discharge values occurring in the 
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lower ten miles of the stretch for day t were combined with the day 

t-1 values for diversions or discharges occurring between ten and 20 

miles above the lower boundary. Day t-2 values would be used for 

discharges or diversions occurring between 20 and 30 miles, and the 

resulting heterogeneous variable would be used with observation t. 

One set of these variables, QDIVl and QDISl, was developed with an 

assumed velocity of 15 miles per day, and a second set, QDIV2 and QDIS2, 

was developed with an assumed velocity of ten miles per day. These 

variable sets were substituted for the As variables described above, 

and the effect on the water balance model was evaluated. 

The Regression Model 

After the construction of the above variables, the water balance 

model can be written as: 

QI\ = Pgg + Pĵ (QOOT̂ ) + P̂ jCQDIV̂ ) + + P̂ (̂SEOP) 

+ Pgg (TSOST) + Pĝ CNTSOST) + P (ETPH) 

+ Ps,(QI\ -

+ - QOliTt.i) 

+ Pl2sW"\-l - <ÎO'")t-2 + fl3s(S°̂ c+l -

+ Pi43(QDIV^ - + Pi5,(QDIV^_J -

+ flSsfODISt - - QOISc-z) 

(28) 
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assuming n = 2 for the As terms (Pĝ  through The term P̂  ̂

is the parameter estimate for each variable and represents any 

constant effects not included in the independent variables. Moving 

the dependent variable terms to the left of the equation and rear­

ranging yields the equation: 

QiN̂ a - P53) = + (Pi3 - P103 + rii3)<Q0BT̂ ) 

+ P (SBDP) + Pĵ dSOST) + Pĝ OtrSOSI) + Pĵ CETPH) 

+ (f,s - !8s)(9INt.i) + C-P,,)(QIN̂ .2) + îiô (QOOr,+i) 

+ (Pl2s - I'lls'W"!,.!) + (- Pi23)(Q0DT̂ .2) + ̂ 133 

+ (fl5s - + <-

+ ffl7s - fl6s)(Q0ISc.l) + (- Pl7s)(9DIS;_2) (29) 

When a regression is performed on the constructed dependent and in­

dependent variables (assuming n = 2 for the As variables), the procedure 

estimates the parameters in the model: 

QIN = + B̂ gCqOUT̂ ) + B^^CQBTVP + + B̂ (̂SROP) 

+ B,̂ (TSOST) + Bĵ GraSOST) + B.̂ (ETPH) + Bĝ CQIN j) 

+ 89s + »10sW™t+l) + +Bl2s'S0UTc_2) 

+ ̂ ISsŴ t+l' + + ®15s«°I\-2> 
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where 

+ B̂ ggCQDIŜ  + B̂ ĝ(QDIŜ _2) + an error term 

(30) 

= Ôs 

0 1 - Pss 

= ̂ Is " ̂ICs l̂ls 

 ̂ 8̂s 

2̂s " ̂ 13s 1̂4s 

. 3̂s 1̂6s 
- 1 - Pg, 

îs 
\s " 1 _ p i = 4, 5, 6, 7, 10, 13 

8s 

î+1 s ~ îs B. = , ̂  — for i = 8, 11, 14, 16 
 ̂- ̂ 8s 

- Pis 
B. = Tj  ̂for i = 9, 12, 15, 17 (31) 

8s 

and the error term is equal to the expected error divided by 1 - Pgg-

During the study the best values of n were determined for the QIN, 

QOUT, QDIV, and QDIS elements of the As variable separately, and 

any n value different from 2 will change the interpretation of the 

B̂  estimates from those given above. The results discussion in the 

following chapter expands on this impact point when the values 

are calculated from the B estimates using equations similar to the 

above. 
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Analytical Procedures 

The basic regression methods used in this study have been pre­

sented clearly by Draper and Smith [94]. Ordinary multiple linear 

regression and stepwise regression procedureŝ  were both used but the 

latter procedure was used sparingly because its special features did 

not benefit the study enough to justify the additional computation 

expense. 

The computer work was accomplished at two different locations on 

two different machines. The early work which was performed during the 

summer of 1975 while the author resided in Ames, Iowa, was done on 

IBM 370/158 and IBM 360/65 computers that are operated as a large 

single computer by the Iowa State University Computation Center. This 

early work involved two distinct elements: (1) a data management effort 

and (2) the initial regression runs. The data were assembled, and the 

variables constructed with Fortran IV programs written by the author. 

The basic data bank contained approximately 28000 pieces of data, and 

the data management programs used 170 K of computer core. The data 

management element produced a large card deck containing the basic data 

which served as input to a program called "Models". This program 

constructed the variables discussed above and then transferred the 

calculated variables to the regression procedure. The software used 

at ISU for regression was the Statistical Analysis System (SAS) [95] 

which was recommended by the Iowa State Statistical Laboratory. 

În stepwise regression the variables are added to the model in 
steps (one per step) and entering variables are chosen or rejected by 
the procedure on the basis of predetermined criteria. 



www.manaraa.com

115 

The latter stage of the computational effort was accomplished with 

a Control Data Corporation (CDC) Model 6400 computer located at Colorado 

State University (CSU), Fort Collins, Colorado. This machine was ac­

cessed from remote terminals located in Denver, Colorado. This change 

in computer facilities was necessary because the author returned to 

his permanent residence and employment. This hardware required a few 

minor modifications in the Fortran software and a change to the 

Statistical Package for the Social Sciences (SPSS) [96], software that 

is available at the CSU facility. Most of the regression work in this 

study was accomplished with the CSU equipment. 

Both SAS and SPSS produce numerous regression statistics, and 

several of these statistics are discussed below because they were used 

extensively in the study. These key statistics are: 

2 
1) R — the square of the multiple correlation coefficient, 

2) SD — the standard deviation of the residuals, 

3) F — the F statistic, 

4) 

5) confidence intervals, 

6) the van-Neumann ratio, 

7) the Durbin-Watson test, and 

8) the Z statistic. 

2 
The square of the multiple correlation coefficient, R , is a 

measure of the portion of variation about the mean found in the ob­

served data that is explained by the regression model. The equation 

2 
for R is: 
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2 Z 

where is the value of the dependent variable predicted by the regres­

sion model from the independent variable in observation i, Y is the 

mean observed value of the dependent variable, is the observed value 

of the dependent variable for observation i, and the summations in­

clude all N observations. This statistic is often used as the basic 

measure of a regression model's value, and this practice can be mis­

leading. The statistic states the explanation variation as a fraction 

of the total variation with the unexplained variations in the dependent 

2 
variable being the 1 - R portion of the total variation. When the 

total variation is very large, this unexplained portion can also be a 

2 
large quantity even when the R value is quite large. A data trans­

formation often reduces the total variation so that the unexplained 

2 
variation is also reduced even when the R value is reduced. Therefore, 

if error minimization is a basic criterion in evaluating a mode the 

2 
maximization of R will not guarantee that this basic criterion is 

optimized. Furthermore, the addition of variables automatically in-

2 
creases R , and as the number of variables approaches the number of 

2 observations, R approaches 1. This statistic would then indicate 

that the model was quite effective when it actually was a trivial 

solution. 

The standard deviation, SD, of the residuals is a better measure 

of the unexplained error in the regression model. The residuals are 

calculated as : 
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- Yj. , (33) 

and the standard deviation is calculated as : 

^ "1/2 
SD = I z f T (34) r.j!L_i 

|_N - k - 1 

where k is the number of independent variables. This method of calculating 

SD assumes the ê  are a sample from a random normally distributed popula-

2 tion of residual errors with variance cr , but if the residuals con­

tain a nonrandom element or an element not distributed normally, the 

2 2 
SD will be larger than cr . The minimization of the SD was used as the 

basic criteria in selecting variables for inclusion in the water 

balance model, and considerable effort was required to minimize the 

effects of nonrandomness and nonnormality on this statistic. 

The F statistic is used to measure the effectiveness of the regres­

sion equation or the individual parameters estimates by the regression 

procedure. The statistic is calculated with the equation: 

^ A — 2 
S (Y. - Y) 

F = ir (35) 

SD̂  

for the overall regression equation. This F ratio can also be calculated 

with the equation: 

F = . (36) 
1 - R 

N - k - 1 

In other words, the ratio represents the relationship of explained to 

unexplained variation with weights assigned for the numbers of variables 

and observations. The F ratio is a better method of evaluating the 
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significance of the regression model because it accounts for the ef-

2 
feet of adding variables on R . In equation 36 the F ratio becomes zero 

when the number of variables exceeds the number of observations by one. 

The F ratio is also calculated for each B estimate which are assumed 

to be estimates of the true regression coefficients. The ratio is 

calculated with the equation: 

SSinc. 
F- = 2̂  , (37) 

SD 

^  A  - 2  
where SSinĉ  is the increase in the sum of squares, Z(Ŷ  - Y) , ex­

plained by the regression equation when variable i is added to the 

model. 

The F statistics are assumed to follow the F distribution and 

are used in the significance calculations. The F distribution is de­

fined in terms of two parameters, the degrees of freedom. In the regres­

sion case, these parameters are k and N - k - 1 for the test of the 

overall model, and 1 and N - k - 1 for the individual parameter esti­

mates. The regression software used in this study computes the 100 

(1 - otYL confidence level associated with a theoretical F value equal 

to the calculated F ratio and reports the value of a as "significance". 

This statistic represents the probability that the calculated F ratio 

could be exceeded given the degrees of freedom associated with the F 

ratio. Low significance values for the regression equation represent 

2 
a high probability that R is greater than 0, and low values for the 

parameter estimates indicate that the B estimate is greater than 0. 
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The T statistic is also reported for the individual B estimates 

and is equal to the square root of the F ratio. The standard error 

of each B estimate is calculated as : 

B. 
SEofB. = ̂  . (38) 

The standard error is then used to construct a confidence interval 

using the Student t distribution using the equation: 

maxmin B̂  = B. ± (SE of B.) (39) 

where t„ , , , is the dimension on both sides of the mean that en-
N-k-ljl-or 

closes 100(1-Q')% of the area under the t cumulative density curve for 

N-k-1 degrees of freedom. Ihe confidence intervals in this study were 

calculated at the 95% level (a = 0.05). 

Both regression software packages output the residuals, ê , for 

all observations; and these residuals were analyzed for (1) the presence 

of autocorrelation, (2) correlation between the residuals and the 

dependent or independent variable(s) or the observations, (3) non-

randomness in the residual and (4) outliers. Time series data contain 

a nonrandom element because any single daily observation is often cor­

related to one or more preceding values. This element is called auto­

correlation, serial correlation, or autoregression, and the presence 

of autocorrelation in the data usually results in autocorrelated 

residuals which violates the critical randomness assumption underlying 

the regression procedure. A common autocorrelation model is written 

as : 
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\ " A-l + "2̂ -2 • - • • ® 

where - 1 < < I, and E represents the random error. This Markovian 

model is of order n, often used with order equal to 1. The auto­

correlation is positive if is greater than zero and is negative if 

is less than zero. The specific effects of autocorrelation, methods 

of testing for it, and methods of removing its effects by transforming 

the basic data are well known today [95]. The use of regression on 

autocorrelated data causes the variances of the parameter estimates 

to be larger than the variances that would be obtained from independent 

data, but the estimates of the variances will be less than the actual 

variances. As a result, the significance tests and the confidence 

interval estimates will be invalid. In addition, the model's predic­

tions will also underestimate the potential error. For these reasons 

the removal of autocorrelation effects is desirable. 

The SPSS software calculates two statistics that are used to 

test for the presence of autocorrelation in the residuals. The von-

Neumann Ratio [97] is calculated with the equation: 

W 

L 

 ̂ z (e - e) 
t=l 

N 

2 2 
where 6 /S is the von-Neumann ratio, ê  and ê   ̂are the residuals 

calculated for observations t and t-1 respectively, and N is the number 

of observations. When the residuals are independent, the ratio is 
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2N 
normally distributed and the expected value is ^ ^ • For large values 

of N the expected value is approximately 2. 

The Durbin-Watson "d" statistic [98] is the second measure of 

autocorrelation provided by SPSS. The statistic is calculated with 

the equation: 

.. I 
where d is the Durbin-Watson statistic. 

The two statistics are quite similar, and the interrelationship 

is defined as: 

In this study the ^ ^ term is 0.999 so the two statistics should 

be nearly equal. Both statistics have been used to test the hypothesis 

that autocorrelation is zero. The von-Neumann ratio is used with the 

normal distribution to establish a confidence level for acceptance of 

the hypothesis. Surbin and Watson [98] found that the hypothesis could 

bê accepted if d exceeded an upper limit d̂  and could be rejected if 

4 did not exceed a lower limit d.̂  but the values between d̂  and 

were laeonelyaive. Both statleticë show positive autocorrelation 

when the values are significantly less than 2 and negative autocor­

relation when the values are significantly above 2. 
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Autocorrelation was removed from the residuals of several versions 

of the model in the following manner. A first order model was assumed 

to be: 

e = pe + E, (44) 
t t-i 

where the E term represents random error. Substituting 

ê  = - X̂ B, and 

t̂-1 \-l\-l® 

(45) 

into equation 45 and rearranging yields 

Yj. - pŶ _i = [X̂  - PXj._̂ ]B + E, (46) 

where Y is the observed dependent variable values for observations t and 

t-1, X is the vector of independent variable for the same observations, 

and B is estimated regression coefficients. This transformed model, 

called an error model, will contain only a random error term if the 

correct error model has been assumed. The optimum value of p was 

found by performing several regressions with a range of values for p. 

The SD was then plotted versus the p values and the points connected 

with a smooth curve. The plotted curves resembled parabolas, and 

the p value that minimized the SD was selected. A regression was 

then performed using the optimum p to find the B estimates. 

The residuals were also examined to determine if the variance 

of the residuals was independent of the variables and the observa­

tions. This nonconstant variance imperfection in a regression model, 

called heteroscedasticity, causes the variances associated with the 
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B estimates to be larger than the variances associated with a constant 

residual variance when ordinary least squares procedures are used in 

the regression, and introduces a larger potential error into the 

prediction applications of the model. These effects are similar to 

the effects of autocorrelation that is discussed above. Johnston [99] 

offers two possible remedial actions, (1) use a generalized least 

squares procedure or (2) transform the data with a model of the rela­

tionships involving the residuals and the variables or observations 

and then use ordinary least squares for the regression. This latter 

method was used in this study because software for a generalized 

least squares solution was not available. 

A nonconstant variance is often visible in plots of residuals 

versus a variable or observations whenever a relationship exists. 

Correlation analysis can also be used when the presence of nonconstant 

variance is suspected but not obvious. Sometimes the residuals are 

correlated to several variables and the observations because of cor­

relations between variables and/or observations. In this situation, 

the construction of a model using one of the highly correlated variables 

will remove all correlations. Finally, interpretation of the regres­

sion results on the transformed data must treat the transformed 

variables as if no transformation had been performed. For example, 

the independent variable 1/(the error model) is still treated as the 

regression constant. 

The SPSS software also produces a "Z" statistic that can be used 

to analyze the residual of nonrandomness. This statistic is based on 

the analysis of runs procedure. A run is defined as any sequence of 
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residuals of the same sign, and any time the signs of two consecutive 

residuals are different, a run is terminated and a new run is begun. 

A run can contain one or more residuals. If the residuals are random, 

the number of runs in any sequence of residuals approaches an expected 

mean value, and the distribution of runs will be normally distributed. 

Draper and Smith [94] have presented this concept quite clearly. 

The SPSS software calculates the number of runs u occurring in the 

residual string, the expected number of runs |i, and the expected 

standard deviation of the runs distribution. These latter two quanti­

ties are calculated with the equations : 

2nun_ 
H + 1, and (47) 
12 

2n n_(2n n_ - n. - n ) 
a =  ̂ — (48) 

(Ni + n̂ ) (n̂  + ng - 1) 

where n̂  is the number of positive signs and n̂  is the number of nega­

tive signs found in the residuals sequence. The Z statistic is then 

calculated as: 

2 = <" - 1/2) (49) 

This statistic is the unit normal deviate of the runs and is used with 

the normal cumulative distribution to test the hypothesis that non-

randomness is zero. 

Draper and Smith [94] point out that this procedure is only valid 

for runs produced by independent observations, and this condition is 

not true for most of the independent variables used in this study. 



www.manaraa.com

125 

Draper and Smith also note that the effect of nonrandom data is small 

unless the ratio, ——̂ —- , is small. In this study that ratio is 

approximately 0.95 so this residual correlation effect should be 

small. 

The runs were also analyzed for outliers which are usually de­

fined as residuals larger than 2 SD's. These outliers usually represent 

aberrations in the data or unique problems in the model structure. 

Since these problems are often unique to each outlier, no general 

approach to this type of analysis is possible. 
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RESULTS 

This discussion of the results will include the findings in the 

areas of independent yariable selection, model transformations, and 

evaluation of the model. 

Evaluation of Independent Variables SROP, Soil 

Stress, and As 

Three elements in the independent variables were resolved during 

the study, and these elements include the selection of the optimum 

SROP, Soil Stress, and As variables configurations. 

The SROP variable 

The relative effectiveness of the SROP configurations is illustrated 

in Table 12. 

Table 12. Comparison of SROP configurations 

Variable Run B 95% confidence Signifi-
configuration ID estimate interval change cance, a 

SROP C 2.9060 -49. 2388 to 55 .0508 0. 00000 0. 913 
SROPl C 4.1186 -47. 7526 to 55 .9898 0. 00000 0. 874 
SR0P2 C -11.4439 -63. 0241 to 40 .1363 0. 00001 0. 668 
SR0P3 G 33.6162 -13. 1705 to 80 .4029 0. 00000 0. 159 
SR0P4 F 53.8247 8. 7679 to 98 .8815 0. 00025 0. 021 
SR0P4 M 46.4344 4. 0404 to 88 .8284 0. 00099 0. 032 

Runs F and G used thé identical set of independents with the exception 

that G used QDIVl and F used QDIV. A comparison of the B estimates, 

confidence intervals, and significance values of variables other than 
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SROP indicated that the runs are essentially identical and provide a 

valid comparison of SR0P3 and SR0P4. Runs C and M provide a good 

comparison between SROP, SROPl, SR0P2, and SR0P4. The results 

indicate that the SROP variables contribute very little to the ef­

fectiveness of the model with SR0P4 contributing a maximum 0.099% 

additional explanation of the total variance. The variables SROP, SROPl, 

and SR0P2 were never significant at the 95% confidence level, and SR0P4 

was more significant than SR0P3 except for one run which included only 

QIN values less than 50 cfs. The confidence intervals for SROP, SROPl, 

SR0P2, and SR0P3 contain the value zero which is typical of variables 

with little significance. The SR0P4 configuration was chosen for use 

in later model runs because the variable was the only SROP variable to 

show any significance; however, this may be a questionable criteria 

because the sign of the B estimates is the opposite of the expected 

sign. The overall significance of the SROP variable is discussed in 

the model evaluation section. 

The soil stress variable 

The three methods of calculating TSOST and NTSOST were compared 

in two different runs. Run lA used the basic variable group QOUT, 

QDIV, QDIS, SR0P4, and ETPH with the QDIVl/QDISl version of the As 

variables. Run IB was identical except the QDIV2/QDIS2 version of 

the As variables was used. The results of these runs are shown in 

Table 13. The SD of the error terms is minimized in both runs with 

the difference of means method (equation 20) of calculating TSOST 

2 and NTSOST, and the same equations also produced the highest R values. 
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Table 13. Comparison of TSOST/NTSOST variables 

Variable Run Variable Sig. of SD 
configuration . ID ID B resids. R̂  

Arithmetic lA TSOST 0.067 120.8758 0. 95695 
difference- NTSOST 0.042 
equations 19 IB TSOST 0.108 120.3608 0. 95761 

NTSOST 0.074 

Difference of lA TSOST 0.001 119.72259 0. 95777 
means NTSOST 0.070 
equations 20 IB TSOST 0.003 119.21625 0. 95841 

NTSOST 0.055 

Difference of 
means in U TSOST 0.003 120.7227 0. 95706 
SD units NTSOST 0.449 
equations 21 

Furthermore, the B estimates for the difference of means method are 

more significant, and the significance level is more consistent between 

the runs when the difference of means configuration is used. There­

fore, equations 20 were used for TSOST and NTSOST. 

The effect on the model of using TSOST and NTSOST instead of TRWA, 

NTKWA, CONl, and C0N2 was evaluated with parallel regressions of the 

variables combined with QOUT, QDIV, QDIS, SR0P4, and ETPH. The 

results of this analysis is shown in Table 14. 

Table 14. Comparison of TSOST/NTSOST with TEWA/NTRWA/C0N1/C0N2 

Variables SD R̂  F 

TRWA/NTRWA/ 
CON1/CON2 130.8747 0.95161 2327.17 

TSOST/NTSOST 131.5351 0.95103 2960.30 
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2 
The lower SD and the higher R values of the four variable groups might 

be used as a basis for selecting that group. However, these two 

statistics are affected favorably by adding variables to the model 

so the small differences between the variable groups in these two 

statistics could be the result of the two additional variables in the 

four variable group. The F ratio for the regressions appears more 

favorable to the TSOST/NTSOST group. In addition, the B estimates for 

the variables CONl, C0N2, and ETPH were not significant at the 95% 

level when the four variable group was used, but all variables except 

the constant were significant when TSOST and NTSOST were used. 

Theoretically the TSOST/NTSOST variable group is more desirable because 

consumptive use and irrigation water application effects should not 

be separable. Since the comparison of these two variable groups do 

not conclusively favor either group, the TSOST and NTSOST were used in 

the model because of their theoretical appeal. 

The As variable 

The relative effects of the three/configurations in the change in 

storage variable were evaluated in several ways. Early in the study 

stepwise regression was used, and this procedure was allowed to select 

both the QDIVl/QDISl and the QDIV2/QDIS2 variable groups. The procedure 

chose QDIV2 first, and the F ratios for QDIV2 and QDIVl were 30.09 and 

8.88 respectively. QDISl was also chosen first, and the QDISl and QDIS2 

F ratios were 4.38 and 1.93 respectively. Since the QDIV variables 

were both more significant than the QDIS variables, the QDIV2/QDIS2 

group was used initially for the model development. At that point in 
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the study the development of the As variables was trying to apply the 

unit hydrograph routing technique of Sauer [93], and when the theoretical 

basis discussed in the preceding chapter finally evolved,the time 

lagged QDIV and QDIS variables were arbitrarily chosen for the 

continuing model development. Late in the study this arbitrary decision 

and the questionable basis of the choice between QDIVl/QDISl and QDIV2/ 

QDIS2 were reexamined with three parallel regressions, each using a 

set of As variables plus the basic group of QODT, QDIV, QDIS, SR0P4, 

TSOST, NTSOST, and ETPH. Lagged QIN variables were also used in each 

regression. The results of this analysis are shown in Table 15. An n 

value of two was used for the lagging of the QIN and QDIV related 

variables, and an n value of 3 was used for the QDIS related variables. 

Table 15. Comparison of As variables 

Variable Number 
configuration SD R F of cases 

QDIV/QDIS 124.4962 0.95483 1595.87 1072 

QDIVl/QDISl 120.6790 0.95613 1588.02 1035 

QDIV2/QDIS2 123.3745 0.95387 1476.94 1015 

The three regressions do not represent identical conditions be­

cause the number of cases used in each run are different. The time 

lagging of variables typically removes cases from the set of observa­

tions, and the available observations for this analysis was expected 

to be 1035. The time lagging procedures available in SPSS are a little 

complex, and the undesirable inclusion or exclusion of cases seen in 
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the Table 15 results occurred several times during the study. Since 

this analysis of the As variables was performed after the study funds 

were exhausted, a rerun of the regressions was not performed because 

the expected benefits did not appear to justify the cost. The results 

in Table 15 favor the QDIVl/QDISl configuration in minimizing SD and 

maximizing R . The results also favor the QDIV/QDIS configuration if 

maximizing the significance of the regression is the criterion. The 

QDIV/QDIS regression included 37 additional cases, and these surplus 

inclusions all occurred during the early days of the study data period. 

These observations included the highest observed values of QIN, QOUT, 

and QDIV and are generally associated with the larger residuals. This 

2 
element would increase SD and decrease R so the apparent differences 

between the QDIV/QDIS and QDIVl/QDISl variable group is not as large 

as the results indicate. However, a similar conclusion is not justi­

fied in comparing QDIVl/QDIS/ and 0DIV2/QDIS2. The twenty cases missing 

from the 0DIV2/QDIS2 regression would probably increase the SD and 

2 
decrease the R statistics if they were included because they also 

are associated with the larger residual segment of the data. So the 

differences in the three key statistics can be used as the basis for 

preferring the QDIVl/QDISl variables over the QDIV2/QDIS2 variables. 

As a result of this analysis, any results discussed below that use the 

QDIV2/QDIS2 version of the As variables can probably be improved by 

substituting the QDIV/QDIS or the QDIVl/QDISl configurations, and 

results using the QDIV/QDIS version may be improved if the QDIVl/QDISl 

version is substituted. This element of the water balance model is 

a good subject for further study. 
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Structural and Variable Transformations 

The transformations of the model structure were performed to equalize 

the variance, eliminate autocorrelation, and eliminate the error caused 

by hydraulic differences between the stretches. 

Variance equalization 

Visual analysis of the plots of residuals versus observations 

showed a considerable change in residual variance between the observa­

tions early in the study data period and those occurring late in the 

period. This change in the variance occurred in all five stretches. 

An analysis of the data indicated that the variance change also cor­

responded to the changing magnitude of the variables QIN, QOUT, and 

QDIV. 

Two models were used to equalize the variance in the manner dis­

cussed in the preceding chapters and both models used the relationships 

between the residuals and the flow variables QIN and QOUT. The simplest • 

model involved multiplying all variables by the quantity 1/QOUT, and 

this model was used during the middle of the study to equalize the 

variance in a model containing the QDIV2/QDIS2 version of the As variable 

2 
plus two experimental variables QOUT and QOUT-QDIV. An evaluation of 

the effectiveness of this equalization model is not possible because 

no comparison regressions were performed. The experimental variables 

were dropped from the model because they were incompatible with the 

underlying theory and another variance equalization model was later 

selected for the developed model. The 1/QOUT model reduced the total 

2 
sum of squares, the R , and the F ratio considerably as expected and 
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reduced the Z statistic from about -18 to about -12, which still 

represents a number of runs about 12 standard deviations less than ex­

pected from a random normal population. The transformed model pro­

duced a SD of 1.47833. 

The second variance equalization model was chosen because the 

variability of QIN is expressed in terms that are related directly 

to QIN. The variance equalization model is 

ÊHÂT ° ( (50) 
a + b * (QINHAT) 

where EHAT is a predicted residual, QINHA.T is the dependent variable 

predicted for each observation by the regression model prior to 

variance equalization, and a, b, and c are constants. The values 

of a, b, and c were estimated with a regression procedure using the 

residuals and the predicted QIN from the unequalized model for the 

dependent and independent variables. The regression equation is: 

ê  = Bq + * (QINHA.T)'̂ , (51) 

2 
where Bq and B̂  are regression estimates of a and b, and e is the 

square of the observed residuals. The value of c was found by making 

repeated regression runs at different values of c and then selecting 

the c value producing the Bq estimate closest to zero so that the ex­

pected variability about an estimated QIN of zero will be minimized. 

This minimization criterion required the acceptance of a SD 0.07% 

larger than the minimum obtainable and reduced the value 1% below 

optimim. Neither of these compromises are considered as sufficient 
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reason to abandon the minimization criterion. This procedure produced 

the following model: 

ê  = 4.21 + 5.47 x (QINHAT)̂ *(52) 

This regression produced the following statistics. 

SD = 31,225.0549 

= 0.11100 

F = 129.23 

Sig. = 0-000 

.2 
 ̂= 1.51156 

S 

d = 1.51010 

Z = - 11.43321 

The F ratio and the significance level indicate that this regression 

equation does explain a portion of the residual variance, but the SD and 

2 the R values show a large portion of the variation in the residuals is 

not explained. The Durbin-Watson and von̂ Neumann statistics indicate 

positive autocorrelation, and the Z statistic indicates the residuals 

of this equation are not normally distributed. 

The impact of variance equalization on the water balance model 

was slight. The Durbin-Watson and von-Neumann statistics moved 

slightly closer to the value of 2 but both statistics were already 

ver;' close to that optimum value. The Z statistic moved 0.3 of a 

standard deviation in the wrong direction. Visual examination of the 
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residual plots revealed some equalization in all stretches, but the 

effect was obvious only in stretches 1 and 5. The effect also ap­

peared more pronounced in the 1973 data blocks. These observations 

suggest that variance equalization models be developed for each stretch 

and data time block. But time and money limitations precluded the 

pursuit of this possibility in this study, and this element of the 

variance equalization transformation will be a good subject for future 

study. 

The inclusion of a variance equalization step in developing a 

water balance model for low flow estimation is desirable because it 

permits the estimation of errors that are specific for the low flow 

range. This concept is illustrated in Figure 15 where the 95% confidence 

limits have been plotted for the variance equalized model. The curves 

in Figure 15 were constructed by assuming that QINHAT is equal to the 

QIN predicted by the model, and the modal residuals are assumed to be 

normally distributed for the calculation of the confidence interval. 

The limits were calculated with the equation: 

QIN̂  = QINp + (tg5%)[4.21+5.47(QINaAT)l'̂ 5̂]°'5 (SÊ ), 

(53) 

where QIN̂  is an upper or lower confidence limit for QIN, QIN̂  is 

the value predicted by the variance equalized model, t is the number 

of standard deviations either side of the central value that includes 

95% of the area under the cumulative normal distribution curve, QINHAT 

is assumed equal to QIN̂ , and SD̂  is the standard deviation of the 

residuals in the variance equalized model. This latter value was 
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Figure 15, 95% confidence limits in low flow range for the variance equalized regression model 
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found to be 1.05743, and t equals 1.65. Without the variance equaliza­

tion the relationship between error and the size of QIN could not be 

estimated, and the 95% confidence interval would be + 149.5 cfs at all 

levels of QIN. Such a large error is intuitively known to be grossly-

overstated for the low flows as Figure 15 illustrates. 

The lower confidence limit in Figure 15 can also be used to il­

lustrate a reason for preferring this second variance equalization 

model to the 1/QOUT model. The lower limit equals zero at a QINHAT 

of approximately 30 cfs. Assuming that the QIN/QOUT ratio equals the 

QIN/QOUT ratio (= 1.45), the GOUT associated with a QIN of 30 cfs would 

be 20.7 cfs. Using the SD from the 1/QOUT results discussed above, 

the 95% confidence interval for QIN would be + 50.5 cfs which is con­

siderably larger than the + 30 cfs predicted using the QINHAT model. 

This comparison inspires more confidence in the latter model even 

though the underlying assumptions of normality are unfulfilled and do 

not support a decisive evaluation. 

Autocorrelation elimination 

Several versions of the model exhibited strong positive auto­

correlation during the study, and the autocorrelation was removed 

with a first order model as discussed in the preceding chapter. A 

p of 0.57 was found to be optimum for a regression model using the 

QDIV2/QDIS2 As variables and containing no disaggregation of the 

hydraulic variables (see next discussion section on disaggregation). 

The procedure increased the Durbin-Watson statistic from 1.39854 to 

2.10389 and increased the von-Neumann ratio from 1.39991 to 2.10595. 
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These statistics indicate that the procedure was effective in removing 

autocorrelation. The effectiveness of this procedure is also indicated 

by the increase in Z from - 18.31651 to - 9.98187, although the latter 

value still indicates a strong nonnormal element in the residuals. 

The final model, however, did not show any significant autocorrela-

g2 
tion in the two key statistics, and d, as reported in the variance 

S 
equalization discussion. Nevertheless, an autocorrelation elimination 

procedure was performed using a first order error model, and a maximum 

SD reduction of 0.06% was possible with a p of - 0.07. These results 

g2 
confirm the d and —« statistics. Since the final model is the only 

S 
version that did not contain considerable autocorrelation and the same 

version is the only model with some of the hydraulic variables disag­

gregated by stretch, a functional relationship between autocorrela­

tion and combining hydraulic effects may exist. However, an examina­

tion of the residual plots reveals several residual sequences that are 

quite obviously autocorrelated and leads to the hypothesis that the 

lack of autocorrelation in the overall model may result from a coinci­

dental combination of offsetting autocorrelation effects. These 

observations suggest another subject for future study. 

Disaggregation, of hydraulic variables 

The purpose of combining all five stretches in each variable 

was to increase the strength of the statistical analysis by in­

creasing the number of observations and to force similar effects to 

yield a single parameter estimate. Regressions were also performed on 

the data for each stretch, and a comparison of the B estimates suggested 
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that some of the hydraulic variable parameters varied considerably 

among the stretches. As a result, a procedure was developed to provide 

separate parameter estimates for the hydraulic variables that can 

theoretically vary significantly among the stretches. 

The procedure consisted of two steps. First, a regression was 

performed on the complete model with the variables similating the 

discrete inflows and outflows disaggregated by stretches. Then the 

stretches with similar parameter estimates were combined within each 

variable. Several variables were aggregated back into a single 

variable, but three key variables were each divided into three 

stretch groups. Stretches were combined whenever the 95% confidence 

intervals for the B estimates overlapped although a few small overlaps 

were ignored. A subjective decision was made in a few cases where two 

estimates overlapped a third estimate but not each other. The CSU 

computer could not perform the step one regression because the model 

was too large so the 2 and 3 day lagged variables were eliminated for 

that run and were then grouped in the same manner as the 1 day lagged 

variables. The results of this regression and the final stretch 

groupings are shown in Table 16. Some variables do not appear in 

Table 16 for a few stretches because the variable observations were 

all zero in that stretch. In addition, eight of the disaggregated 

variables were eliminated from the model because the significance of 

their B estimates exceeded 0.500. Three disaggregated variables with 

B estimates significances above 0.500 were inadvertently retained, and 

one of these variables became significant at the 99% confidence level 

in the final model. As a result the decision to eliminate the 
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Table 16. Hydraulic variable stretch groupings 

95% conf. int. Grouping 
Str. B Lower Upper by str. 

Variable No. estimate Sig. limit limit No. 

1 0.4965 0.000 0.4322 0.5608 
2 1.0719 0.000 0.9749 1.1690 1-3 
3 0.3512 0.000 0.1843 0.5182 2-4 
4 0.8408 0.000 0.5260 1.1557 5 
5 -0.0665 0.585 -0.3051 0.1722 

1 0.2279 0.000 0.1799 0.2758 
2 0.1410 0.000 0.0732 0.2088 1-2-5 

QOUT ̂  3 0.6345 0.000 0.5019 0.7671 3-4 
4 0.4752 0.000 0.2395 0.7108 
5 0.2812 0.003 0.0964 0.4660 

1 -0.2923 0.000 -0.3800 -0.2045 
2 -0.2687 0.000 -0.3941 -0.1434 
3 -0.3840 0.000 -0.5273 -0.2407 
4 -0.4479 0.001 -0.7001 -0.1956 
J -0.0028 0.977 -0.1888 0.1833 

1 0.6197 0.001 0.2479 0.9915 
QDIV 2 -0.0333 0.872 -0.4383 0.3716 1-2-3 

3 0.4312 0.000 0.3122 0.5503 
4 -0.1523 0.806 -1.3689 1.0643 

1 0.3618 0.002 0.1356 0.5880 
QDIV 2 0.3749 0.027 0.0427 0.7071 1-2-3-4 

3 0.2899 0.000 0.1971 0.3827 
4 0.8225 0.102 -0.1634 1.8083 

1 -0.2992 0.017 -0.5444 -0.0540 
QDIV 2 -0.3580 0.025 -0.6702 -0.0458 1-2-3 

3 -0.4025 0.000 -0.5083 -0.2968 
4 -0.2768 0.570 -1.2334 0.6798 
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Table 16. Continued 

Str. 
Variable No. 

B 
estimate Sig, 

957o conf. int. 
Lower 
limit 

Upper 
limit 

Grouping 
by str. 
No. 

2 -1.9149 0.060 -3.9126 0.0827 
QDIS 3 -1.2418 0.000 -1.5639 -0.9197 2-3 

4 -12.3389 0.945 -455.3033 424.6256 
5 -0.0224 0.690 -0.1324 0.0876 

QDIS, t-1 

2 
3 
4 
5 

-0.5103 
0.7529 
5.0399 
-0.6493 

0.594 
0.000 
0.982 
0.197 

-2.3880 
0.4316 

-433.2653 
-0.1746 

1.3673 
1.0741 

443.3451 
0.0360 

2-3 
5 

1 0.4114 0.000 0.2757 0.5471 
2 0.1405 0.007 0.0377 0.2434 1 

QIN. , 3 0.5207 0.000 0.4286 0.6128 2-4 
t-i 

4 0.1152 0.230 -0.0731 0.3034 3-5 
5 0.6730 0.000 0.4887 0.8573 

SR0P4 All 2.5908 0.880 — — All 

TSOST All -16.4978 0.012 — — All 

NTSOST All -21.3925 0.001 — — All 

ETPH All 1.8166 0.000 All 

Constant All 2.0727 0.779 All 
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variables with insignificant B estimates now appears to be a mis­

take. 

As a result of this disaggregation, the final model contained 27 

independent variables and a constant. The effect on the model of re­

grouping the hydraulic variables was quite obvious. Key statistics from 

three regressions are presented in Table 17. The first regression in­

cluded QOUT, QDIV, QDIS, SR0P4, TSOST, NTSOST, ETPH, the t+1 variables, 

and the QDIV/QDIS version of the As variables. The second regression 

contained the completely disaggregated variables as shown in Table 15, 

and the third regression used the regrouped variables shown in Table 16 

with the 2-day lagged variables included. A 3-day lagged QDIS variable 

was also included for stretch 5. The decline in the SD from regression 1 

to regression 2 is evidence of a significant improvement in the model, 

and the F ratio remained very large even though it was reduced con­

siderably. Furthermore, the regrouping of the variables recovered 

most of the F ratio decline with a very small increase in the SD. 

The fluctuations in the F ratio are strongly influenced by the large 

increases and decreases in the number of independent variables caused 

by the disaggregation and regrouping. The effects on the Z statistic 

is also quite large, and the improvement in the Z statistic attributed 

to the regrouping after the disaggregation was not expected. 



www.manaraa.com

143 

Table 17. Statistical effects of regrouping the hydraulic variables 

Regression 1 Regression 2 Regression 3 

Statistic 
No 

disaggregation 
Complete 

disaggregation 
Regrouped 
variables 

0.95483 0.97689 0.97583 

SD 124.496 89.831 90.584 

F 1595.86 960.91 1568.26 

6̂  

s' 
1.49558 2.09955 2.07258 

d 1.49419 2.09754 2.07058 

Z -18.15434 -10.24438 -8.38209 

Evaluation of the Models 

The regression model 

The regression with the equalized variance but with no autocorrela­

tion removal was selected as the final model for discussion instead of 

the regression with the autocorrelation removed because this final 

procedure provided essentially no improvement in the model but intro­

duced additional complexity. The B estimates and their significance 

levels for this model are presented in Table 18 . 

The B estimates for the QOUT, QDIV, and lagged QIN variables all 

show high significance levels with the exception of most of the 2-day 

lagged variables; however, the B estimates for most of the QDIS variables 

appear to be zero. This lack of effectiveness for QDIS can be traced 

to several causes. The variable has no effect in stretch I because 
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Table 18. B estimates for final regression model 

Stretch . 1 Stretch 2 Stretch 1 3 Stretch 4 Stretch 1 5 
Variable B Est. Sig. B Est. Sig. B Est. Sig. B Est. Sig. B Est. Sig. 

Const. 2.9184 0.013 2.9184 0.013 2.9184 0.013 2.9184 0.013 2.9184 0.013 

QOUTt+i 0.3547 0.000 0.3547 0.000 0.4347 0.000 0.4347 0.000 0.3547 0.000 

QOUTj. 0.3043 0.000 0.7071 0.000 0.3043 0.000 0.7071 0.000 -0.1035 0.010 

Q0UT̂ _1 -0,4266 0.000 -0.4266 0.000 -0.4266 0.000 -0.4266 0.000 0 — 

QDIV^^, 0.4543 0.000 0.4543 0.000 0.4543 0.000 0.4543 0.000 0 — 

QDIV̂  0.2138 0.012 0.2138 0.012 0.2138 0.012 0 — 0 -

QDIV^.i -0.3961 0.000 -0.3961 0.000 -0.3961 0.000 0 — 0 — 

QDIVt_2 0.0243 0.684 0.0243 0.684 0.0243 0.684 0 — 0 — 

QDISt 0 — -0.3350 0.021 -0.3350 0.021 0 — 0 — 

QDISt_i 0 - 0.0746 0.768 0.0746 0.768 0 — -0.0287 0.448 

QDIS^.g 0 - 0.2068 0.280 0.2068 0.280 0 — -0.0418 0.272 

qDIS^_g 0 — 0 — 0 — 0 — -0.0209 0.516 

QIMt-l 0.6740 0.000 0.2526 0.000 0.6335 0.000 0.2526 0.000 0.6335 0.000 

0.0489 0.415 0.0717 0.011 0.0447 0.275 0.0717 0.011 0.0447 0.275 

SR0P4 2.4732 0.656 2.4732 0.656 2.4732 0.656 2.4732 0.656 2.4732 0.656 
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Table 18. Continued 

Stretch 1 Stretch 2 Stretch 3 Stretch 4 Stretch 5 
Variable B Est. Big. B Est. Slg. B Est. Sig. B Est. Sig. B Est, Sig. 

TSOST -4.8048 0.010 -4.8048 0.010 -4.8048 0.010 -4.8048 0.010 -4.8048 0.010 

NTSOST -1.6377 0.610 -1.6377 0.610 -1.6377 0.610 -1.6377 0.610 -1.6377 0.610 

ETl'H 0.0747 0.446 0.0747 0.446 0.0747 0.446 0.0747 0.446 0.0747 0.446 
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it is always zero, and its values in stretch 4 show practically no 

variation between observations because the variable consists mostly of 

small discharges that were estimated from very little data. The largest 

variations and observations of QDIS occur in stretch 5 where the Purgatoire 

River joins the Arkansas River, and the lack of effectiveness for QDIS 

in this stretch was unexpected. An examination of the data found 

several inconsistencies in the passage of large surges through the 

stretch. The inconsistencies involve the time delay between the surge 

inflows and outflows and variations in the shape and size of the outflow 

hydrograph. Since these flows all pass through John Martin Reservoir, 

the probable cause of the problem is the deviation in the operation of 

the reservoir from the operating principle of passing all flows 

through the reservoir without delay. Even though the reservoir contents 

were reported as zero throughout the study data period, this analysis 

indicates that some short-term storage was probably occurring. 

The B estimate for SR0P4 was insignificant in many versions of 

the model so the ineffectiveness of this variable in this final model 

is expected. Evidently the precipitation that occurred during the study 

period became part of the soil moisture bank or percolated into the 

groundwater. Since the recorded precipitation contains few large 

events, this conclusion seems reasonable for this study area and period, 

but an SR0P4 variable must be included in any water budget model during 

parameter estimation because this variable is always a potential model 

element. Further evaluation of the SR0P4 variable can be accomplished 
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in future research using a different study area or period that contains 

a more active surface runoff element. 

The B estimates for TSOST were insignificant in most versions of 

the models, and this variable increases the explained variation by 

about 0.2% of the total variation. The impact of this single variable 

on the SD was not determined. The effectiveness of the variable ap­

pears to be related to an outflow element because the sign of the 

estimate is negative. This outflow element is either a good simulation 

of the SAME model variable or the diversion data element of the TSOST 

variable is acting as an additional version of QDIV. The variable 

NTSOST contains diversion data in the same manner as TSOST, but the B 

estimates for this variable are not significant. Therefore, the reason 

for the significance of TSOST is probably its role as a simulator of 

SAWE. 

The B estimate for NTSOST and ETPH were usually significant during 

the study and were usually insignificant for the regression constant. 

However, these conditions were reversed after the application of the 

variance equalization procedures. Both of the variables simulate slow 

acting distributed inflow and SAWE effects. The exchange of NTSOST and 

ETPH for the constant may indicate that these effects change so slowly 

during the short study period that a constant is a more effective 

simulator. If this hypothesis is confirmed in later studies, the ef­

fort required to develop a water balance model will be greatly reduced 

by eliminating the need to estimate phreatophyte and nontributary area 

consumptive use. 
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The significance of the B estimates was used to select the appropriate 

n value for the As variables. A value of was selected for QDIV and QIN. 

A value of 0 is indicated for QDIS which is not surprising because the 

QDIS observations are usually one or two magnitudes less than the other 

discrete flow variables. Johnston [99] suggests other methods of 

selecting n which could be investigated later. 

The incremental improvements and changes in the model attributable 

to the major elements of the water balance were measured with a sequence 

of regressions, and the results are shown in Table 19. 

Table 19. Relative model impacts of major variable groups 

Regression 
No. 

Independent 
variables SD r2 d Z 

1 QOUT, QDIV, QDIS 136.43 0. 94712 1.08134 -19. 81517 

2 Above plus distributed 
inflows and SAWE 131.54 0. 95103 1.11597 -20. 01930 

3 Above plus As variables 120.68 0. 95613 1.43731 -18. 74832 

4 Above with t+1 and 
regrouped hydraulic 
variables 90.58 0. 97583 2.07058 -8. 38209 

Since the As and regrouped hydraulic variables have provided the 

most improvement in the model, these two variable groups probably are 

the best areas to investigate for further improvement in the model. 

Several subjects for future study in those two areas are suggested in 

this dissertation. 
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Prior to variance equalization, the model produced 53 residuals 

greater than 2 standard deviations, called outliers, representing 

5.11% of the residuals. These values were reduced to 43 and 4.15% 

respectively by the variance equalization procedure. No authority 

could be found that provided norms for assessing the significance of 

these statistics, but subjectively they appear hî . The data in the 

observations associated with each outlier were examined for clues to 

any effects not properly simulated in the model. Many pairs of out­

liers occurred in two consecutive observations which involved a surge 

in an inflow or outflow. The model appeared to react too slowly pro­

ducing first a large positive residual and then a large negative residual. 

This problem is most likely related to the linear assumptions under­

lying the As variable. As discussed earlier, a polynomial or nonlinear 

model for this variable group creates more complex computation problems 

and has been left for future study. The examination of outliers was 

responsible for the inclusion of the t+1 variables, but the effect of 

this new variable was masked by the simultaneous inclusion of the re­

grouped hydraulic variables. Since the B estimates for these variables 

are significant and several of the outliers that indicated a need for 

the t+1 variables have been reduced this addition to the model was 

retained. 

The SD of 90.58 in the most effective regression (#4) is about 

19.1% of the mean value for QIN. This latter value is called the 

coefficient of variability, and usually falls in the 20-25% range for 

hydrologie studies. This comparison coupled with the large R and 

the apparent lack of autocorrelation associated with the final regression 
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model encourages the conditional acceptance of the water balance model 

as a part of a low flow estimation technique for arid and semiarid 

areas. Unconditional acceptance will require the elimination of the 

apparent nonnormal element in the residuals and a more complete evalua­

tion of the potential error in the model. 

The water balance model 

The water balance model parameters were calculated from the B 

estimates in Table 17. All estimates with a significance below the 

90% confidence level were assumed to equal zero, and the regression 

model then became : 

Equations in terms of and were developed in the same manner 

as shown in the preceding chapter and were rearranged to produce the 

following set of equations. 

QIN = Bq + B̂ g(QOUT̂ ) + BggCQDIV̂ ) + Bĝ CQDIŜ ) 

+ B̂ (̂TSOST) + + Eĝ (QIN̂ _2) 

(54) 

P (55a) 

P. = B. (1 P. ) for i = 0, 3, 4, 7, 9 
xs is — 5s 

(55b) 

(55c) 

(55d) 



www.manaraa.com

151 

P. = B. (P. - 1) for i = 6, 8, 10 (55e) 
IS xs 5s 

These equations were used to calculate the parameter estimates shown 

in Table 20. 

The sign of the constant parameter, Pq, indicates that the variable 

is simulating an outflow from the stream. A constant understating of 

the diversion flows could be the source of this outflow element, but 

the loss of streamflow to the groundwater aquifer as discussed above 

is the most probable source of this element. If further research con­

firms that aquifer demand is the true source of this element, this 

water balance model technique will become a new approach to the estima­

tion of regional consumptive use. 

The sign of the TSOST variable indicates that this variable is 

simulating a distributed inflow which is either ungaged tributary in­

flow to the study area, surface runoff from irrigation tail water, and/or 

waste irrigation ditch water. Considering the arid conditions during 

the study data period and the associated high demand for irrigation 

water, the surface runoff is the most probable source of this element. 

The signs of the discrete flow variables, QOUT, QDIV, and QDIS, 

are correct with the exception of QOUT in stretch 5. The problems 

caused by the John Martin Reservoir that were discussed above are the 

probable cause of this sign problem. The B estimate for this variable 

was insignificant when the hydraulic variables were completely disag­

gregated but became significant after recombining the variables and 

equalizing the variance. This behavior was not seen in the other 
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Table 20. Parameter estimates for water balance model 

Independent Parameter estimates 
variable Parameter Stretch 1 Stretch 2 Stretch 3 Stretch 4 Stretch 5 Units 

Constant 
0̂ 

8. 952 4. 319 7. 963 4. 319 7. 963 cfs 

QOUTj. 0. 713 0. 940 0. 852 1. 058 -0. 479 None 

QDIV̂  
2̂ 

0. 834 0. 403 0. 742 0. 086 0 None 

QDISt 3̂ 
0 -0. 496 -0. 914 0 0 None 

TSOST -14. 739 -7. ,111 -13. 110 -7. 111 -13. ,110 cfs 

QINc-QINt_i -2 « ,067 -0, .480 -1. 729 -0. 480 -1. ,729 None 

QINt_i-QINt.2 6̂ 
0 -0, .106 0 -0. ,106 0 None 

QOUTt̂ -̂QOUTj. 1, ,088 0, .525 1, .186 0. .643 0, .968 None 

QOUTt-QOin't_i 8̂ 
1, .309 0 .631 1, .164 0, ,631 1, .164 None 

QDIVt̂ l-QDIVt 9̂ 
1, ,394 0 ,672 1, .240 0, .672 0 None 

QDIV̂ -QDIVt,̂  1̂0 
1 .215 0 .586 1 .081 0 0 None 
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discrete flow variables and is considered another symptom of a dis­

continuity in the functioning of the stretch. 

The signs of the As variables are consistent, i.e. variables that 

share the same sign were expected to have like signs; but the signs are 

opposite from the expected signs. The accuracy of the parameter esti­

mate calculations and a review of the assumptions underlying the As 

variables confirmed that the signs are wrong. If the As variables are 

rearranged as follows (n = 1) 

X = (QIN̂  - QOUT̂  - ODIV̂  + QDIŜ ) 

- (QIN̂ _̂  - QOUT̂ _̂  - + QDIŜ _i) (56) 

The sign reversal can be explained. The signs of AQOUT and AQDIV 

were reversed in the rearrangement because the effects of these two 

variables are opposite to the effects of AQIN and AQDIS. Rearranging 

the basic hydrologie water budget model leaves : 

As = Z inflow - S outflow. (57) 

Each of the two quantities in the parentheses in equation 52 are good 

approximations of the right side of equation 53 so equation 52 really 

estimates the quantity Aŝ  - Aŝ  Since the data used for the Q 

variables are in terms of cubic feet per second the As quantity becomes 

As/At; and, furthermore, the difference (As/At)̂  - (As/At)̂  ̂  is 

actually 

fft t̂-1 
At " At 

At 
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since the t - (t-1) increment is also At. This quantity is an integer 

approximation of the second derivative of storage with respect to time. 

In other words the As variable estimator is the rate of change in the 

daily rate of storage, and this quantity can be either positive or 

negative. The sign reversal means that the rate of change is the 

rate of storage is negative instead of positive as was implicitly as­

sumed in the model structure. This result is not surprising because 

the rate of storage is related to the magnitude of the streamflow, and 

the streamflow magnitude typically declines during the study data 

period. This study finds this trend component to be a significant part 

of the water balance model so this element of the As variable should 

be included in the development of new models, but future research 

should investigate the value of an additional variable to simulate the 

magnitude of the change in storage. 
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SUMMARY AND CONCLUSIONS 

Summary 

This study began with the investigation of potential problems in 

the estimation of low flows for water quality management in arid and 

semiarid river basins. The special conditions created in these basins 

by the application of water law based on the Prior Appropriation Doctrine 

introduce a new role for low flow estimation procedures in that purchase 

of water rights and relocation of diversions could become water quality 

management alternatives. This economic implication produces a sizable 

research subject. The same special conditions also suggest a new low 

flow estimation technique involving (1) the establishment of the 

active diversions in a regulated stream segment by frequency analysis 

of call dates or a gaged flow that can be correlated with the call date 

history and (2) the estimation of the desired low flow with a water 

balance model using the diversions identified in step 1 (see pages 26-28) 

as outflows. The investigation of step 1 is left for future study, and 

this study concentrated on developing a method for constructing the water 

balance model. 

The ultimate development and acceptance of the estimation process 

presented in this dissertation will introduce the following activities 

into the planning and management functions in the physical and economic 

areas of water quality. Application of the step 1 process will produce 

a call date for a regulated area. The call date will define a set of 

diversions for a regional flow regime that is comparable to the 7-day, 

10-year low flow regime in unregulated basins. Simultaneous application 
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of step 2 in the estimation process will define a water balance model 

for the area. Some adjustments to the significant distributed inflow 

and outflow variables are required to account for special low flow 

conditions, e.g. temperatures for TSOST would have to be selected when 

the time of occurrence of the low flow is unknown. The desired critical 

lew flow (QIN) is calculated using the appropriate diversions and 

associated discharges derived as a result of the step 1 analysis, 

using equation 54. This low flow value would then be used in a water 

quality model to determine required treatment levels, and a treatment 

cost model would provide a measure of the cost to achieve the desired 

water quality benefits without modifying the critical low flow (CLF). 

A planner or manager can then use the tools developed in the economic 

study to determine if social benefit/cost considerations make the 

modification of the critical low flow a more desirable alternative. 

For example, a model of the water rights market developed in the 

economic (and legal-institutional) study would yield cost estimates or 

water quality tradeoffs required to alter the existing water allocation 

system fo%̂ various levels of critical low flow modification. This 

information could then be fed into a cost optimization model that would 

tradeoff treatment cost with water right modification costs, and/or 

the results of the water rights market analysis would serve as input 

to a regional water allocation model for use in a normative planning 

analysis. 

The following conclusions have been drawn from the results of 

this study. 
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Conclusions 

1. This study has found a need for a new low flow estimation 

technique for arid and semiarid basins because (1) the basic assumption 

of the common frequency analysis estimation method are seriously 

violated in the dry arid/semiarid basins and (2) the potentially 

rapid changes in the low flow process found in these dry basins are 

not reflected quickly enough in the frequency method, especially if 

the available data string is long. 

2. The study has shown a potentially strong tie among low flow 

estimation for water quality management and the arid-semiarid basin 

economies if a responsive estimation method is developed and accepted. 

Interaction mechanisms are defined and a two phase research program is 

developed. The first phase will develop predictive tools for a second 

normative phase. Cost models are defined for the predictive study area, 

and an allocation model is defined for the normative phase, 

3. The study results justify a conditional acceptance of the 

basic hypothesis that a hydrologie budget model is a suitable water 

balance model for step 2 of the proposed estimation method. Considerable 

improvement in the model's accuracy was demonstrated during the study, 

and additional improvement areas have been found during the final 

evaluations of the study. These potential areas are listed below with 

the conclusion on additional research. 

4. The selection of multiple regression as the analytical 

technique provided several useful model development tools and should 

be used in future water balance models for this basin analysis. 
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5. The results indicate that slowly changing hydrologie variables, 

e.g. the consumptive use of phreatophytes and crops in nontributary 

areas can be effectively modeled by a constant parameter when the model 

time period contains four or less months. This conclusion may also 

extend to periods greater than four months because this study did not 

define the time period limits. Further investigation of this conclusion 

is warranted because this hydrologie budget approach might lead to a 

new method of estimating regional consumptive use of crops and phreato­

phytes . 

6. This study demonstrated that for this sample study area and 

period the surface runoff from precipitation was not significant in 

the water balance model. This conclusion, however, cannot be applied 

universally to the water budget model approach. In this study, the 

only configuration of the surface runoff variable to show any functional 

relationship was a 2-day lagged compounded variable that simulated a 

runoff hydrograph. This observation may be useful in guiding future 

water budget model attempts. 

7. The value of removing heteroscedasticity and autocorrelation 

was demonstrated during the model development even though the final 

model did not benefit substantially from either of these analytical 

techniques. Since these two problems are typical of many hydrologie 

time series data strings the value of these tools should be measured 

in similar future studies of water quantity or quality. 

8. The study also demonstrated that the presence of a reservoir, 

even a "dry" reservoir, within a water balance model can seriously affect 
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the calibration accuracy. Evidently some random storage and release 

must occur even when the reservoir is supposed to be passing all in­

flows directly through the reservoir. 

9. The study has also broadly defined a needed and companion 

research project into the frequency component of the proposed low 

flow estimation method. This project will further develop step 1 of 

the two step method. 

10. The results of this study have defined the following research 

needs to further refine the accuracy of the water balance element. 

a. Add an additional As variable to the model. A suggested 

form is (QOUT+QDIV + QDIS) with a P̂ -̂QIN term 

moved to the dependent variable side of the equation 

and appropriate interpretations applied to the B estimates. 

b. The relative value of the QDIV/QDIS and ODIVl/QDISl 

configurations should be evaluated. 

c. The role of variance equalization models should be 

evaluated further, especially the value of using dis­

similar models for different stretches or data blocks. 

In addition the value of QOUT, QDIV, or QOUT-QDIV models 

should be compared with the YHAT model. 

d. The value of using different autocorrelation models for 

each stretch should be investigated. 

e. One or more years of additional variables should be 

developed and used to verify the calibration results 

reported herein. 
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11. Finally, this study has shown that water budget models can 

be developed economically. This study was accomplished by a single 

researcher with a limited budget in about six months. With this ex­

perience, future models can be developed in even shorter periods by 

water quality management agencies and consultants. 
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